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Preface

The problem of controlling the output of a system so as to achieve
asymptotic tracking of prescribed trajectories and/or asymptotic re-
jection of undesired disturbances is a central problem in control the-
ory. A classical setup in which the problem was posed and success-
fully addressed — in the context of linear, time-invariant and finite
dimensional systems - is the one in which the exogenous inputs,
namely commands and disturbances, may range over the set of all
possible trajectories of a given autonomous linear system, commonly
known as the exogeneous system or, more the exosystem.

The case when the exogeneous system is a harmonic oscillator is,
of course, classical. Even in this special case, the difference between
state and error measurement feedback in the problem of output reg-
ulation is profound. To know the initial condition of the exosystem
is to know the amplitude and phase of the corresponding sinusoid.
On the other hand, to solve the output regulation problem in this
case with only error measurement feedback is to track, or attenu-
ate, a sinusoid of known frequency but with unknown amplitude and
phase. This is in sharp contrast with alternative approaches, such as
exact output tracking, where in lieu of the assumption that a signal
is within a class of signals generated by an exogenous system, one
instead assumes complete knowledge of the past, present and future
time history of the trajectory to be tracked.

The most relevant feature of posing the general problem in these
terms is, however, that incorporating a suitable internal model of the
exosystem into the compensator which provides the control action,
asymptotic tracking with closed loop stability can be achieved, even
in the the presence of variations in certain system parameters, on
the basis of a relatively restricted amount of information about the
controlled plant. The latter, in fact, usually consists in the actual
value of the tracking error alone and does not include explicit access



to either the actual trajectory to be tracked nor to the disturbance
to be rejected.

The importance of asymptotic tracking, disturbance attenuation,
and internal stability in their own right underscores the central role
which the problem of output regulation has played in the develop-
ment of classical and modern automatic control. In addition, by vary-
ing either the error function or the exosystem, or by setting either
the control or the exogenous variables to zero, a variety of interesting
problems is obtained, which must also be effectively addressed.

In particular, to solve the output regulation problem one must
also be able to four basic problems. The first is to design (robust)
stabilizing state feedback laws for nonlinear contro! systems. The
second problem is to determine conditions for the existence of (sta-
ble) forced oscillations, in the special case when the exosystem is
a harmonic oscillator. Our approach to this problem, for harmonic
oscillators as well as for more general exosytems, is geometric and
is based on center manifold theory. Because the characterization of
a steady-state response is of independent interest, we outline this
geometric approach in detail. Of course, one must also be able to
design state feedback laws which shape the steady state response
to harmonic forcing for general classes of exosystems, as well as for
harmonic oscillators. The existence theory for such feedback laws is
embodied in what are now known as the regulator equations, and
can also be expressed in terms of the transmission zeros, or zero
dynamics, of the plant and exosystem. Finally, to solve the prob-
lem of output regulation via error measurements one must be able
to design dynamic filters, or compensators, which produce a proxy
for the plant-exosystem state for feedback laws achieving the prior
objectives. In the more classical case where the appropriate system
is observable, or detectable, this can be achieved using standard ob-
server design but, especially for problems involving real parametric
uncertainty, this may not always be possible. Fortunately, an alter-
native procedure for the design of dynamic filters can be based on
a combination of the internal model principle and the notion of sys-
tem immersion - an approach which may prove to be of independent
interest in robust control.

These are the basic ingredients to both the output regulation
problem and the problem of designing output regulation schemes
which are robust against real parametric uncertainty or, as we shall
refer to it in this book, robust output regulation. Of course, each



of these problems, and their synthesis in the solution of problems of
output regulation, has a long history. An exhaustive presentation of
the theory of output regulation for linear, time-invariant and finite
dimensional systems can be found in the works of Davison, Francis
and Wonham. In particular, these papers show that a compensator
which solves the problem can always be viewed as the interconnection
of two components, called the servocompensator and the stabilizing
compensator, whose roles are those of generating the control inputs
needed to impose the prescribed asymptotic behavior and to stabilize
the resulting closed loop system. In this book, we give a detailed
presentation of the geometric approach to output regulation in the
linear case.

The study of the corresponding design problem for nonlinear,
time-invariant and finite dimensional systems, was initiated to the
best of our knowledge in the work of Francis, Wonham and Hepburn.
These contributions were followed by our earlier work on solving the
problem of output regulation of nonlinear systems for neutrally stable
exosystems, which led to the formulation of the so-called nonlinear
regulator equations, and their existence theory based on zero dy-
namics. This work has stimulated more extensive research on special
classes of exosystems, and on the development of computational ap-
proaches to solving the regulator equations by Huang, Rugh, and
Krener, as well as the recent development of methods for robust out-
put regulation by Huang, Khalil and ourselves.

In this book, we give a unified treatment of output regulator the-
ory for linear and nonlinear systems and address a number of issues
which were left open in the earlier works on the subject. In particular,
we describe an approach to structurally stable regulation which uni-
fies and extends a number of prior existing results. We also address
the issue of robust regulation, i.e. the issue of achieving regulation in
the presence of parameter uncertainties ranging within a prescribed
set. We wish to thank several people, agencies and institutions who
have supported our work on nonlinear output regulation, stabiliza-
tion and control. In particular, it is a pleasure to thank the Air
Force Office of Scientific Research, the National Science Foundation,
the Ministero per la Ricerca Scientifica e Tecnologica, the McDonnell
Douglas Corporation, 1'Universitd di Roma “La Sapienza”, and the
Washington University in St. Louis.
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Chapter 1

Introduction

1.1 The basic ingredients of asymptotic
output regulation

In this book we consider problems of output regulation for nonlinear
systems modeled by equations of the form

i = f(z,u,w)
e = h(z,w), (1.1)

with state £ € X C R", control input u € R™, regulated output
e € R™ and exogenous disturbance input w € W C R" generated by
an exosystem

w = s(w). (1.2)

We assume that f(z,u,w), h(z,w) and w(w) are C* functions (for
some large k) of their arguments and also that f(0,0,0) = 0, 2(0,0) =
0 and s(0) = 0.

Generally speaking, a problem of local output regulation is to
design a feedback controller so as to obtain a closed loop system in
which, when w(t) = 0, a certain equilibrium is locally asymptotically
stable and, when w(t) # 0 and sufficiently small, the regulated output
e(t) asymptotically decays to 0 as ¢ — oo. The structure of the
controller usually depends on the amount of information available
for feedback. Throughout this book, we focus our attention to the
case in which the information in question only consists, at each time
t, in the value e(t) of the error at this time. In other words, we
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consider controllers modeled by equations of the form

(1.3)

with state ¢ € Z° C R, in which n(£,e) and 6(¢) are C* func-
tions of their arguments, and n(0,0) = 0, 6(0) = 0. The purpose
of output regulation is to obtain a closed loop system in which,
from every initial condition in a neighborhood of the equilibrium
(z,€&,w) = (0,0,0), the response of the regulated output asymptoti-
cally converges to 0 as time tends to oc.

It is important to observe that output regulation entails the prob-
lems of the asymptotic tracking of a class of reference trajectories, the
disturbance attenuation of a class of disturbances, and the require-
ment that both attenuation and tracking be achieved while main-
taining internal stability of the closed-loop system. In this regard,
one may think of the exosystem as consisting of two subsystems, one
which generates signals to be tracked, and one which generates the
disturbances to be attenuated.

The case when the exosystem is a harmonic oscillator is, of course,
classical. Even in this special case, the difference between state and
error measurement feedback in the problem of output regulation is
profound. To know the initial condition of the exosystem is to know
the amplitude and phase of the corresponding sinusoid. On the other
hand, to solve the output regulation problem in this case with only
error measurement feedback is to track, or attenuate, a sinusoid of
known frequency but with unknown amplitude and phase. This is
in sharp contrast with alternative approaches, such as exact output
tracking, where in lieu of the assumption that a signal is within a class
of signals generated by an exogenous system, one instead assumes
complete knowledge of the past, present and future time history of
the trajectory to be tracked.

In this setup, the problem in question can be formally posed in
the following terms.

Local Output Regulation. Given a nonlinear system of the form
(1.1) with exosystem (1.2) find, if possible, a controller of the form
(1.3) such that:
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(a) the equilibrium (z, ) = (0, 0) of the unforced closed loop system

z= f(I,e(ﬁ),O)
€ = n(¢, h(z,0)) 4

is locally asymptotically stable in the first approximation,
(b) the forced closed loop system

is such that

for each initial condition (z(0),£(0), w(0)) in a neighborhood of the
equilibrium (0,0,0). <«

The importance of asymptotic tracking, disturbance attenuation,
and internal stability in their own right underscores the central role
which the problem of output regulation has played in the develop-
ment of classical and modern automatic control. In addition, by
varying either the error function h(z,w) or the exosystem, or by set-
ting either the control or the exogenous variables to zero, we obtain
a variety of interesting problems which must also be effectively ad-
dressed. As a preliminary step in our analysis of the problem, we
begin by describing the basic ingredients needed for the solution of a
problem of asymptotic output regulation. In this respect, we observe
that, to solve the output regulation problem we must also be able to:

(1) design locally exponentially stabilizing state feedback laws for
nonlinear control systems,

(i) determine conditions for the existence of (stable) forced oscilla-
tions, in the special case when the exosystem is a harmonic oscillator,

(iii) design state feedback laws which shape the steady state response
to harmonic forcing for general classes of exosystems, as well as for
harmonic oscillators,

(iv) design dynamic filters, or compensators, which produce a proxy
for the system-exosystem state for feedback laws achieving the prior
objectives.



These are the basic ingredients to both the output regulation
problem and, of course, the problem of designing output regulation
schemes which are robust against real parametric uncertainty or, as
we shall refer to it in this book, robust output regulation. We con-
clude this section by reviewing the key features and challenges con-
cerning these basic ingredients.

Ezponential Stabilization. This first basic ingredient is indeed a
problem concerning the linear approximation

i = Az + Bu
of the nonlinear control system
z = f(z,u,0)

at the equilibrium (z,u,w) = (0,0,0). In this case, if all systems
parameters are known, problem (i) can be solved by any of a num-
ber of standard approaches, such as infinite horizon, linear-quadratic
optimal control or infinite horizon H, control design. Moreover, our
calculations in Section 2.3 show that the general solution with error
measurement feedback very easily incorporates any given solution to
problem (i) into a general law achieving local output regulation. The
same calculations extend to the case where certain plant parameters,
denoted by u, are unknown. In this case, one considers the linear
approximation

z=Auz+ Bu (1.6)

of a nonlinear control system
z = fu(z,u,0).

The problem of stabilizing the linearization (1.6), for all para-
metric uncertainties within the class of n-dimensional systems with
m-dimensional inputs, with a linear controller has been shown to be
NP-hard. On the other hand, if one admits nonlinear controllers
and insists that the pair (A,, By) be controllable for every u, then
adaptive stabilization schemes are known, underscoring the potential
usefulness of nonlinear output regulation, even in a linear context.
Needless to say, however, this is a topic which deserves a great deal
of further research.



Forced Oscillations and the Ezistence of a Steady-State Response.
For constant coefficient, linear control systems

z = Az + Dw, w(t) = U sin(wt)

where no eigenvalue of A lies on the imaginary axis, problem (ii) has
a complete and satisfying resolution. Viewing w as fixed by the choice
of the harmonic oscillator with frequency w as the exosystem, for each
amplitude U there is exactly one initial condition z° which generates
a periodic trajectory with period T = 27 /w. Moreover, the periodic
orbit is asymptotically stable if, and only, if the unforced system is,
i.e. whenever the eigenvalues of A all lie in the open left half plane,
which we can assume has been arranged as in problem (i).
For nonlinear control systems

z = f(z,0,w) (L.7)

where, for example, w(t) = U sin(wt), the situation is far more com-
plex, with the possibility of one, or several, forced oscillations with
varying stability characteristics occurring. In addition, the funda-
mental harmonic of these periodic responses may agree with the fre-
quency of the forcing term (harmonic oscillations), or with integer
multiples or divisors of the forcing frequency (higher harmonic, or
subharmonic, oscillations). Despite a vast literature on nonlinear
oscillations,! a subject with its origins in celestial mechanics, only
for second order systems is there much known about the stability
of forced oscillation and, in particular, which of these three kinds of
periodic responses might be asymptotically stable.

It is interesting, then, to view the solution of the problem of
output regulation for local and more global problems in this context.
In this brief introduction we shall limit ourselves to a discussion about
the local case (see, however, section 4.5 for a semiglobal analysis).
Suppose, for simplicity of discussion, that (1.7) is affine in w, i.e., so
that we have

£ = fo(z) + plz)w,
or, in particular,
z = fo(z) + p(z)U sin(wt)

and we can view p(z)U sin(wt) as a small perturbation. This is the
basis of the method of averaging for determining the existence and

1See for example Hayashi [18].



6 Chapter 1. Introduction

stability of periodic orbits. A similar analysis is motivation for the
method of “harmonic balance” in which a Fourier series is consid-
ered for an assumed periodic trajectory of period T = 27 /w and the
Fourier coefficients are determined so that the differential equation
is satisfied; i.e., so that

/OTf(x(s),o, U sin(ws))ds = 0. (1.8)

Averaging and harmonic balance have their origin in the method
of “small parameters,” pioneered by Poincaré. Briefly, in the case of
constant coefficients linear control systems, the initial condition z°
which generates a periodic trajectory can be expressed as a linear
function of the amplitude U

z° = PU

using the variation of parameters formula, so that
T
P=(I-eAT)1 / e4T=9) D sin(ws)ds .
0

Poincaré’s idea was to take the linear function obtained for the first
approximation as the first term in a power series representation in
U’

z° = PU + RU*+ PU® + - --

which can in principle be developed from (1.8) for an assumed peri-
odic trajectory of period T or, alternatively, for an initial condition
which generates this trajectory. Of course, one needs to check that
the series converges and represents a function 7 (U) in a neighborhood
of U = 0. Our approach is geometric and seeks instead to “sum the
series”

1° = PU + PRU?+ RBU3 + ... = x(U)

by characterizing =(U) as the solution of a system of partial differ-
ential equations, for which the center manifold theorem guarantees
existence of a solution. Moreover, once one has implemented a solu-
tion to problem (i), asymptotic (orbital) stability of the steady-state
response also follows from the center manifold theorem. Further-
more, for the problem of output regulation treated in this book, the
center manifold can be shown to be unique.
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Since the existence of a steady-state response to harmonic forcing,
or to forcing by more general exosystems, is of independent interest
in many applications of systems analysis and control, we shall present
this approach in more detail in section 1.2. For a nonlinear control
system with unknown parameters

i = f#(zau’ 0)

these arguments persist, yielding an asymptotically stable, steady-
state response which, of course, is dependent on u, and hence un-
known for purposes of problem (iii).

Shaping the Steady-State Response. The third basic ingredient in
output regulation, the ability to shape the steady-state response of
a nonlinear control system

z = f(z,u,w)

is prescriptive in nature, and would appear to be quite challenging
from the point of view of the more descriptive tools for predicting the
existence of a steady-state response. In our approach to classical and
robust output regulation, the existence of a steady-state response
and the ability to shape this response are embodied in each of two
equations, known as the “regulator equations,” which are presented
in section 2.1 and whose solution necessarily exists if the problem of
local output regulation can be solved using any method.

While the first of the regulator equations will always have a solu-
tion, as a consequence of the center manifold theorem, the solvability
of the system of regulator equations can be expressed in a system the-
oretic framework which has an appealing “frequency domain” inter-
pretation. In classical automatic control, there is a simple, intuitive
condition for solvability of the the problem of output regulation: no
transmission zero of the plant to be controlled should coincide with
a natural frequency of the signal to be tracked (or attenuated). For,
while a unique steady-state periodic response to harmonic forcing at
such a frequency certainly exist for linear, single-input single-output
transfer function, if the emitted response is absorbed at this fre-
quency we cannot adjust its amplitude or phase by feedback.

This fundamental condition can be recast in a state-space form
by introducing a linear operator whose spectrum on one subspace
coincides with the plant transmission zeros and on whose spectrum
on another subspace coincides with the natural frequencies of the
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exosystem. In this setting, to say that no transmission zero of the
plant coincides with a natural frequency of the signals to be tracked
is to say that these two susbspaces are complementary. In Chap-
ter 3, we describe an existence theory for the regulator equations
which provides a nonlinear enhancement of this criterion, in terms
of zero dynamics. Briefly, since whenever w = 0 and the system
output h(z,0) is constrained to be zero we must have that the er-
ror is zero, the zero dynamics of the augmented system contains the
zero dynamics of the system to be controlled. In this setting, the
regulator equations are solvable just in case the plant zero dynamics
are complemented in the augmented zero dynamics by a copy of the
exosystem, in a sense we make precise in Chapter 3.

Filtering a Prozy for the Plant/Ezosystem State. If the plant/exo-
system is exponentially detectable using the error variables as an out-
put measurement, one can verify that a “separation principle” holds
for output regulation via state feedback and a standard state observer
scheme.? Unlike exponential stabilizability of the plant, however, de-
tectability of the augmented system is not a necessary condition for
the solvability of the problem of output regulation. More impor-
tantly, detectability of the augmented system will not hold when we
treat the case of robustness with respect to real, parameteric un-
certainty. Rather, the derivation of the regulator equations for the
error measurement case reveals that the actual necessary condition
relating to measurements of the augmented state is, in fact, a geo-
metric formulation of the “internal model principle.” In short, rather
than it being necessary to be able to recover the augmented state,
it is only necessary that any dynamic compensator which achieves
output regulation must also contain a copy of the exosystem.

With these motivations in mind, in section 2.2 we combine the
actual necessary conditions, embodied in the regulator equations,
with the notion of “immersion” of a nonlinear system to derive a
new class of systems which generalize dynamic observers and provide
a “proxy” for the state in a compensator design which provides an
alternative to the design based on a separation principle. We expect
this technique to be of independent interest in other problems of
robust control.

See [34).
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1.2 The computation of the steady-state re-
sponse

Consider a nonlinear system modeled by equations of the form
z = f(z,u) (1.9)

with state z € R® and control input u € R, where f(z,u) is a C*
function of its arguments with f(0,0) = 0, and suppose

u(t) = Usin{wt) . (1.10)

It is easy to see that, if the linear approximation of £ = f(z,0) at
the equilibrium z = 0 is asymptotically stable (i.e. all the eigenvalues
of the Jacobian matrix

of
=5}

have negative real part) and U is sufficiently small, then system (1.9)
exhibits a well defined steady-state response to the input (1.10). For,
observe that the response of system (1.9), in the initial state z(0) =
zg and subject to the input (1.10), coincides with the response of the
autonomous system

& = f(z,d(w))
W = Sw (1.11)
where w € R?,
S= (_Ow ‘(‘;) , dw)=w,
and

2(0) = 25, w(0) = wp = (3) .

If all the eigenvalues of the matrix A have negative real part,
system (1.11) has two complementary invariant manifolds through
the equilibrium point (z,w) = (0,0): a stable manifold and a (locally
defined) center manifold. The steble menifold is the the set of all
points (z,0) such that z belongs to the basin of attraction of the
equilibrium z = 0 of z = f(z,0). The center meanifold, on the other
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hand, can be expressed as the graph of a mapping £ = 7(w), where
m(w) is a C*~} function satisfying

o= Sw = f(n(w), dw))
and 7(0) = 0.
The restriction of the flow of (1.11) to its center manifold is indeed
a copy of the flow of
w= Sw.

Thus, since the latter is stable (in the sense of Lyapunov), so is the
equilibrium (z,0) = (0,0) of the full system (1.11). As a consequence,
if U is sufficiently small and z¢ = m(wp), the response z(t) exists for
all t € R and, in particular, z(t) = 7w(w(t)). Set

z%(t) = m(w(t)) .

Since the center manifold is locally attractive, it is readily seen that
for every sufficiently small initial condition z¢ # 7(wp), the response
z(t) of (1.11), which exists for all ¢t € R, differs from z%(t) but
satisfies

lim {z(t) ~ z=(¢)] = 0.

t—=o0

Thus, we can conclude that z%(t) is the (unique) steady-state re-
sponse of (1.9) to the input (1.10).

These considerations can easily be extended to the more general
situation in which, instead of harmonic forcing inputs, system (1.9)
is driven by inputs generated by an autonomous system of the form

w = s(w)

u=dw), )
where w € R", s(w) and d(w) are C* functions of their arguments
with s(0) = 0 and d(0) = 0, provided the following hypothesis holds.

Neutral Stability. The equilibrium w = 0 is a stable equilibrium
(in the sense of Lyapunov) of (1.12) and each initial state wp € W is
stable in the sense of Poisson. «

An immediate consequence of this hypothesis is that the Jacobian
matrix
1 0s

B [%Lm
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has all eigenvalues on the imaginary axis. In fact, no eigenvalue of S
can have positive real part, because otherwise the equilibrium w = 0
would be unstable. Moreover, since no trajectory of the system can
converge to w = 0 as t — 00, no eigenvalue of S can have negative
real part. As a consequence of this, if all the eigenvalues of the matrix
A have negative real part, the composite system

w = s(w)

(1.13)

has a (locally defined) center manifold through (z,w) = (0,0) and
results identical to those discussed above hold.

As an example of this method of determining the steady-state re-
sponse of a nonlinear system, we describe hereafter how the response
in question can be computed for an arbitrary (single-input single-
output) finite-dimensional nonlinear system having an input-output
map characterized by a finite Volterra sertes, when the forcing input
is any finite linear combination of harmonic inputs, i.e. any periodic
input having a finite Fourter sertes.

To this end, it indeed suffices to show how to compute the steady-
state response of a nonlinear system whose input-output map is char-
acterized by a Volterra series consisting of one term only, that is

t rm Tk—1
y(t) = /0 / /0 w(t, 7y,...,7k)u(r1) ... u(7k)dr ... d7x .
’ (1.14)
Since our method of computing the steady-state response is based
on the use of state space models, we first recall an important result
about the existence of finite dimensional realizations for an input-
output map of the form (1.14).

Proposition 1.1 The following are eguivalent
(1) the input-output map (1.14) has finite dimensional nonlinear re-
elization,
(ii) the input-output map (1.14) has finite dimensional bilinear real-
1zalion,
(iii) there ezist matrices Ai, Ag,... Ak, Nia,...,Nxc1k, C1 and By
such that

w(t,Tl,...,Tk)

= CreM =TI NypeA2( =) Nog .- Ny _y yes(h-1") By

(1.15)



12 Chapter 1. Introduction

In particular, from the matrices indicated in condition (iii) it is
possible to construct a bilinear realization of the map (1.14), which
has the form

T, = Ajz; + Nipzou
Lo = Ag:l:g + Nozzsu
. 1.16
k-1 = Ap-1ZTp-1 + NeophZru (1.16)
Ty = Arzi + Bru
y = 01231 .

In fact, standard calculations show that the Volterra series char-
acterizing the response of (1.16) when its initial state is zero degen-
erates into a single convolution integral of the form (1.14), iu which
the kernel w(t,y,...,7,) has the expression (1.15). The realization
in question is possibly non-minimal, but this is not an issue so long
as the calculation of the steady-state response is concerned. For con-
venience, having set

T ) A1z1 4+ Nyjozou
zo Aszy + Nozzau
T = , F(z,u) = . (1.17)
Tk-1 Ag-1Zk-1 + Nioj kTru
Ty Arzy + Bru

and H(z) = Cz;, system (1.16) will be rewritten as

T = F(z,u)
y=H(z).

We proceed now with the computation of the steady-state re-
sponse of this system to an arbitrary (zero mean) input having a
finite Fourier series. Indeed, an input of this kind can always be
viewed as output of an autonomous linear system of the form

w=Sw
v=Tw,

in which the matrix S is a matrix of the form

S, - 0
s( ) (118
0 - Sm
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and

si=(1 501) v Sa=(_p Bg‘). (1.19)

Consistently with the notation used for the blocks of S, we denote
the state vector w of this system as

w= COI(wlh Wi12,.-.,Wml, wm.2) .

In order to be able to use the to the approach outlined at the
beginning of the section, we need the following preliminary resuit.

Lemma 1.2 Let A be a n x n matriz having all eigenvalues with
nonzero real part and S be as in (1.18) - (1.19). Let P denote the set
of all homogeneous polynomials of degree p in wy1, w12, .- ., Wm1; Wmi,
with coefficients in R. For any q(w) € P", the equation

Om(w)
ow

Sw = Am(w) + q(w) (1.20)
has a unique solution w(w), which is an element of P™.

Proof. P is indeed a vector space over R, of finite dimension
d(p,m). Set

Xi = wi1 — jwis, Xi = wq + jwra
and note that any b(w) € P can be written as
b(w) = S bieimin XX X X
t1+i1 4 Him+im=p
where the b;,;,...i,,;,. 'S are uniquely determined and
biljl"'imjm = I_)jlil"'jmim

because the coefficients of b(w) are real numbers. Choose any order
for the set of indices $17; - - - tmJjm and write b(w) in the form

b(w) = BW

where W is a d(p, m) x 1 vector consisting of all products of the form
the XPXJ .. XimXJm  while B is a 1 x d(p,m) vector consisting
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of the corresponding bjyi,...jminm'S- In the notation thus established,
elements g{w) and 7{w) of P™ can be expressed in the form

glw) =QW,  m(w) =TIW,

where @ and II are n x d(p, m) matrices.
Note that
OXP X - Xop Rip)
ow

)\ . .. i T im ¥
Sw = A jimim X1 X1 - Xem X3
where

’\iljx'--imjm = j((il - jl)ﬂl + e+ (im - Jm)ﬂm) .
Thus,
ow

-éfuTSw = SW

where S is a d(p,m) x d(p,m) diagonal matrix having all the eigen-
values on the imaginary axis.
In the notation introduced above, the equation (1.20) becomes

NSW = ANIW + QW
and this in turn reduces to the Sylvester equation
IS = ATl + Q..

Since the spectra of S and A are disjoint, this equation has a unique
solution II. «

Using this property it is possible to prove the following result.

Proposition 1.3 Let F(z,u) be as in (1.17) and S as in (1.18)-
(1.18). Assume that all matrices Ay, Az,... Ax have eigenvalues with
negative real part. Then the equation

an(w)
ow

Sw = F(n(w),Tw), 7(0)=0 (1.21)

has a globally defined solution m(w), whose entries are polynomials,
in the components of w of degree not ezceeding k.



Proof. Set mi(w) = Ilxyw, where Il is a matrix of appropriate
dimensions. Then observe that the equation

aﬂk (w)
ow

reduces to a Sylvester equation of the form

Sw = Agmi(w) + BiyT'w

;S = Al + BT

which indeed has a unique solution II; because the spectra of S and
Ay are disjoint.
Next, consider the equation

Omg_1(w)

£ Sw = Agme—1(w) + Ni—y xmx(w)Tw (1.22)

and note that Ni_; xmx(w)l'w is a vector whose entries are homoge-
neous polynomials of degree 2 in the components of w. Thus, accord-
ing to Lemma 1.2 this equation has a unique solution mi—(w) whose
entries are homogeneous polynomials of degree 2 in the components
of w.

By iterating this process, it is easy to show the existence and
uniqueness of the solution w(w) of (1.21), whose entries are polyno-
mials of degree not exceeding k. <

Remark. It is not difficult to extend the previous construction
to the case in which the periodically forcing input has nonzero mean
value. The details are left to the reader. «

The set
M, = {(z,w) = n(w)},

where 7(w) is the solution of (1.21), is a globally defined invariant set
for system
z = F(z,Tw)

W= Sw. (1.23)

We show next this set is globally attractive and. in particu-
lar, that for any pair (zp,wp), the solution z(t) of (1.23) satisfving
(z(0),w(0)) = (z0,wp) and the solution z%(t) of (1.23) satisfying
(z*%(0), w(0)) = (7(wp), wp) are such that

lim ||z(t) — z*()]| =0, (1.24)

t—oc
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thus concluding that z%(t) is the steady-state response of (1.23) to
the input generated by

w= Sw

u=Tw
in the initial state w(0) = wq.

First of all we observe that if all matrices A;, As,... Ax have
eigenvalues with negative real part, then all trajectories of (1.23) are
defined for all ¢ and, in particular, are bounded. In fact, for any wy,
the input u(t) = I'w(t) of (1.16) is a bounded function. Since the
matrix A, has all eigenvalues with negative real part, then also the
response zj(t) of the linear system

Ip = Arzp + Bru
from any initial state z;(0) is bounded. Next consider the subsystem
Tk = Ap—1Tk—1 + Ng_1 kTru

viewed as a linear system with input zx(¢)u(t). Since the latter is
bounded, then also the response zx (t) from any initial state zx—(0)
is bounded. Continuing in the same way, one concludes that the
entire response z(t) of

& = F(z,u)

from any initial state z(0) is bounded.
Having established boundedness, the attractivity property (1.24)
derives from the following arguments. Set

6(t) = z(t) — m(w(t))
and note that, by definition of n(w),
8(t) = F(8(2) + m(w(t)), Tw(t)) = F(r(w(t)), Tw(t)) .
For each fixed u, F(z,u) is linear in z, and can be expressed as

F(z,u) = (A+ Nu)z

with
Al N12‘U. 0 o 0 0
0 Ay Nopu --- 0 0
A+ Nu = . . . . (1.25)
0 0 0 o Ay Nk—l,ku

0 0 o - 0 A
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Therefore 8(t) is a solution of the linear system

§(t) = (A + NTw(t))s(t) .

Using the triangularity property of (1.25), the hypothesis that all ma-
trices A;, Ao, ..., Ar have eigenvalues with negative real part and the
fact that the components of w(t) are finite combinations of sinusoidal
functions, it is easy to deduce that the components é,(2), d2(2),...,
0k (t) of &(t) can be viewed as responses of cascaded asymptotically
stable linear systems. As a consequence

lim 6(¢) =0.
t—00

1.3 Highlights of output regulation for linear
systems

For the sake of completeness, we conclude this introductory Chapter
with a review of some of the most relevant facts about output regu-
lation of linear systems. This will also facilitate the comparison with
a number of results which will be presented later about nonlinear
systems.

Consider a linear system modeled by equations of the form

= Az + Bu+ Pw

1.26
e=Cz+Qu, (1.26)

with state z € R", control input u € R™, regulated output e € R™
and exogenous disturbance input w € R" generated by an exosystem

W= Sw. (1.27).

The problem of output regulation is defined precisely as in section
1.1, that is as the problem of finding a feedback law

i = 25; Ge (1.28)

such that

(a) the equilibrium (z,¢) = (0,0) of the unforced closed loop system
t= Az + BH¢

£ =Ft+GCx (1.29)
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is asymptotically stable,
(b) the forced closed loop system

iz = Az + BH{ + Pw

E=Ft+GCz+ GQu (1.30)
w= Sw
is such that
lim e(t) =0
t—o00

for every initial condition (z(0),£(0), w(0)).
Trivially, if (1.29) is required to be asymptotically stable, i.e the

matrix 4 BH
J= (GC ! ) (1.31)

is required to have all eigenvalues with negative real part, then (A4, B)
must be stabilizable and (C, A) must be detectable. On the other
hand, asymptotic decay of the error requires a more subtle condition,
which reposes on the following simple yet important fact.

Lemma 1.4 Consider the closed loop system (1.80) and suppose the
matriz (1.81) has all eigenvalues with negative real part. Suppose the
ezosystem is neutrally stable. Then,
lim e(t) =0 (1.32)
t—o00

for each initial condition (z(0),£(0),w(0)) if and only if there ezist
matrices I1 and ¥ satisfying -

IS = All+BHT+P
TS FT (1.33)
0 = ClI+Q.

I

Since the result of this Lemma is a particular case of a more
general Lemma which will be proven later in section 2.1, we omit
its proof and proceed directly with the illustration of a straightfor-
ward consequence, which provides a basic necessary condition for the
existence of solutions of the problem of output regulation.

Corollary 1.5 Consider the plant (1.26), with ezosystem (1.27).
Suppose the ezosystem is neutrally stable. There ezists a controller
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which solves the problem of output regulation only if there ezist ma-
trices Il and T" satisfying

IIS = AIl+BI'+P

0 = CII+Q. (1.34)

The results expressed by the previous Lemma and by its Corollary
are the basic tools also for the analysis of the problem of robust
output regulation for linear plants subject to parameter uncertainties.
Viewing the set of matrices {4, B, C, P, @} which characterize (1.26)
as an element of a space of parameters

n XN nxXm mXn nxr mxXr
P=R x R x R x R**" x R™*",

uncertainty on the values these parameters, within known intervals
about certain nominal values, can be simply expressed by allowing
the set of parameters {A, B,C, P,Q} to range on a given neighbor-
hood Py of a fixed element { Ao, Bo, Co, Po, Qo} of P. In this setup,
the problem of robust regulation for linear plants subject to param-
eter uncertainties is usually posed as follows.

Robust linear regulator. A fixed controller of the form (1.28) is a
robust regulator at {Ao, By, Co, Py, Qo} if:
(i) it solves the problem of output regulation for the plant character-
ized by the nominal set of parameters {Ag, By, Co, Py, Qo},
(ii) it solves the problem of output regulation for each perturbed set
of parameters {4, B,C, P,Q}, so long as the latter is such that the
corresponding closed loop system remains asymptotically stable, i.e.

is such tbat the matrix
A BH
GC F

has all eigenvalues with negative real part. <

Using the results summarized above and, in particular, Corollary
1.5, it is possible to establish a necessary condition for the existence
of a robust regulator. For, suppose a controller of the form (1.28) is
a robust regulator at { A, By, Co, Py, Qo} and, consider the set Py of
all perturbed sets of parameters {A, B, C, P,Q} such that the closed
loop system remains asymptotically stable. Since, by definition, the

matrix
( Ay ByHA )
GCy F



20 Chapter 1. Introduction

has all eigenvalues with negative real part, the nominal set of pa-
rameters {Ag, Bo, Co, Po,Qo} is an interior point of Py. Again by
definition, the fixed regulator (1.28) must solve the problem of out-
put regulation for each perturbed set of parameters { A, B, C. P, Q} in
Po. Thus, by Corollary 1.5, the equations (1.34) must have a solution
for every {A, B, C, P,Q} in Py (the solution in question being depen-
dent, of course, on the specific set {4, B,C, P,Q}). In particular, the
equations

I1S Aoll + BeI' + P

0 Coll +Q

must have a solution for every P,Q such that {Ag, Bo, Co. P,Q} in
Po. But since {Ag, By, Co, FPo,Qo} is an interior point of Py and
(1.35) are linear equations, it follows that the equations in question
must have a solution for all P, Q.

This observation lends itself to the characterization of a basic
necessary condition for the existence of a linear robust regulator. To
this end, it suffices to recall the following important result about
linear matrix equations of the form (1.35).

(1.35)

Proposition 1.6 The linear equations (1.85) have a solution for all
P,Q if and only if the matriz

(Ao - Al Bo>
Co 0

has independent rows for each A which is an eigenvalue of S.

(1.36)

Using this result in the present setup and recalling that system
(1.26) has the same number of input and output components, it is
concluded that a robust regulator for (1.26) exists at { Ao, Bo, Co, Fo,
Qo} only if the pair (Ag, Byp) is stabilizable, the pair (Cp, Ap) is de-
tectable, and the matriz (1.86) is nonsingular for each A which is
an eigenvalue of S. Fortunately these conditions happen to be also
sufficient for the existence of a robust regulator.

Theorem 1.7 Consider ¢ plant

i = Aoz + Bou + Pyw

1.37
e = Cpz + Qow, (1.37)

with ezosystem (1.27). Suppose the ezosystem tis neutrally stable.
There ezists e robust regulator if and only if the the pair (Ao, By) is



1.3. Highlights of output regulation for linear systems 21

stabilizable, the pair (Co, Ag) is detectable, and the matriz (1.86) is
nonsingular for each A which is an eigenvalue of S.

To show that the conditions indicated in this Theorem are suffi-
cient, we construct now a controller of the form (1.26) and we prove
that this is a robust regulator.

Without loss of generality, suppose that the matrix S which char-
acterizes the exosystem has been transformed into a block-diagonal

0 Smin

in which Spin is a matrix whose characteristic polynomial coincides
with the minimal polynomial of S (note also that, if this is the case,
characteristic polynomial and minimal polynomial of Sp;; necessarily
coincide, i.e. Smip 15 & cyclic matrix). Let ¢ denote the dimension of
Smin and let & a gm X gm matrix defined as

Stin 0 0
e=| O w0
0 0 Smin

(the block Sy is repeated m times in ®, where m is the number of
input and output components of (1.26)).

Let N and I" be matrices, of dimensions gm x m and m x gm
respectively, such that the pair (®,N) is controllable and the pair
(T, ®) is observable. Standard controllability /observability tests for
systems in Jordan form show that matrices of these kind always exist,
because @, by construction, has exactly m Jordan blocks per each
different eigenvalue and the number of columns of N (rows of T') is
supposed to be equal to m.

At this point, we use the condition that the matrix (1.36) is non-
singular for each A which is an eigenvalue of S (or, what is the same,
eigenvalue of Spin or of @), to construct a controller which stabilizes
system (1.26) and proves to be a robust regulator. To this end, we
need the following result from linear system theory.

Lemma 1.8 Suppose pairs (Ag, By) and (®,N) are stabilizable, the
pairs (Cp, Ag) and (I',®) are detectable, and the matriz (1.86) is
nonsingular for each A\ which is an eigenvalue of ®. Then, the pair

(8 9 () ow
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ts stabilizable and the pair

(Co 0), (’g" B&’)F) (1.39)

ts detectable.

Proof. Suppose the pair (1.38) is not stabilizable. Then there
exist row vectors 1 and wT such that

T(4o - M) = wTNG
.’I:TBo = 0
wl(®@—-AI) = 0

for some A having nonnegative real part. Note that w cannot be zero,
otherwise the stabilizability of (Ag, By) would be contradicted and
therefore ) is necessarily an eigenvalue of ® (the latter, by the way, in
the present situation has all eigenvalues on the imaginary axis). Note
also that «T = wTN cannot be zero, otherwise the stabilizability of
(®, N) would be contradicted. Then, the identity

Ay— X B
T ,T 0 0
(=% u )( Co 0)

holds, for some nontrivial (zT,uT), where X is an eigenvalue of ®.
This contradicts the hypothesis on the matrix (1.36). Identical argu-
ments work to prove detectability of (1.39). <

Observe now that, since the pair (1.38) is stabilizable, also the

pair
(w6, 5)- (%) 10

is stabilizable (stabilizability is preserved by state feedback) and,
since the pair (1.39) is detectable, also the pair

(Co 0), (1\’,42,0 Bf) (1.41)

is detectable. As a consequence, the linear system characterized by
the triplet of matrices

(we, %) () @0
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is stabilizable by output feedback, i.e. there exist K, L, M such that

Ay Bl By Ag By(I' M)
(e 8) Gl (e 1 oY)

has all eigenvalues with negative real part.
Using the matrices ®,N,I" and K,L, M thus defined, we con-
struct a controller of the form (1.28) with

F-_—(‘(I)’ I‘;) G=<JZ), H=(T M). (142)

The controller thus defined does indeed stabilize the nominal
plant. In fact, this yields a closed loop system described by equations
of the form

z = Az+B(I' M){+ Puw
£ = <¥>0z+<§ IO{>£+<JZ)Qw (1.43)

e = (Cz,

which, if (4,B,C) = (Ao, By, Co), is asymptotically stable by con-
struction.

To check that the proposed controller is a robust regulator, we
need to check that the error converges asymptotically to zero no
matter how the plant parameters are perturbed, so long as the per-
turbation is such that the corresponding closed loop system remains
asymptotically stable. To this end, it is useful to recall the result
expressed by Lemma 1.4, which provides a condition under which a
controller rendering a closed loop system asymptotically stable also
yields asymptotic decay to zero of the associated error. In view of this
result, it is clear that we can conclude that the proposed regulator is
robust if, for each set of perturbed plant parameters (A, B,C, P, Q)
for which the closed loop system is asymptotically stable, i.e. such
that is the eigenvalues of the matrix

( cfc BF{{ ) (1.44)

have negative real part, the equations (1.33) have a solution.
To this end recall that by hypothesis the matrix S which charac-
terizes the exosystem has all eigenvalues on the imaginary axis and
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therefore, for each set of perturbed plant parameters such that the
closed loop system is asymptotically stable, the Sylvester equation

(& F)O-@a-() oo

is solvable in II, X for each X,Y on the right-hand side.

Choosing X _p
(Y) - (—GQ)

we obtain the two equations

All+BHZ+P=1IS (1.46)

FX-L8§=~-G(CIl + Q). (1.47)

The first condition here coincides with the first condition of (1.33).
We need to show that the second condition implies the second and

third condition in (1.33). To this end, define two linear mappings as

follows:
F . R{ntmg)xr R(n+mg)xr

-
z —» F(Z)=FZ-ZIS
G: Rm™xr o Rin+tma)xr
zZ = G(Z2)=GZ
With this notation, equation (1.47) can be rewritten as

F(E)+6(CI+Q)=0. (1.48)

Suppose we are able to prove that the images of 7 and G intersects
only at {0}, so that (1.48) would imply

F(£) =0 (1.49)
G(CT +Q) = 0. (1.50)

In this way we would obtain the second condition of (1.33), which
is actually identical to (1.49) in the new notation. Finally, if we were
also able to show that ker(G) = {0}, from (1.50) we could deduce
that also the remaining condition of (1.33) holds.

In summary, it is possible to conclude that the proof of the fact
that the proposed regulator is robust can be completed by simply
proving that the two mappings F and G satisfy

im(F) Nim(G) = {0} (1.51)
ker(G) = {0}. (1.52)
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The proof of these properties can be achieved via the following
auxiliary result.

Lemma 1.9 There ezist at least mr independent solutions L of the
eguation

Fr=%XS. (1.53)
Proof. Recall that
Smin " 0 0
F=lo - Sm 0
0O --- 0 K

and observe that if X is a solution of

SminX = XS, (1.54)
the m matrices
X 0 0
0 X 0
Zy=| 1|, Za=| - |, Zm=| -
0 0 X
0 0 0

are independent solutions of (1.53). Since (1.54) has at least r inde-
pendent solutions X, the result follows. «

With the aid of this result, we proceed as follows to prove (1.51)
and (1.52). Note that the existence of mr independent solutions of
(1.53) shows that the dimension of ker(F) is at least mr. Since F
maps R(*+™O*T into itself, we deduce that

dim(im(F)) < (n + mq)r — mr. (1.55)
Moreover,
dim(im(G)) < mr (1.56)

because the dimension of the image of a linear mapping cannot exceed
that of its domain (in this case pr).

Return now to (1.45), pick up any arbitrary X,Y, let I1, T denote
the corresponding solution and note that by construction

GCII+FL -£S=Y
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i.e.

g(cl)+ F(E) =Y.

Because of the arbitrariness of Y, this relation shows that
im(F) + im(G) = R(+ma)xr (1.57)
and this, together with (1.55) and (1.56), yields

dim(im(F)) = (n + mg)r — mr
dim(im(G)) = mr.

These relations prove that (1.51) and (1.52) are true.

Remark. The result of the previous Theorem can be extended
to the case of systems having a different number of input and out-
put components. To this end, observe that, using Proposition 1.6,
one can still show that a necessary condition for the existence of a
robust regulator is that the matrix (1.36) has independent rows for
each A which is an eigenvalue of S. Thus, a robust regulator may
exist only if the number of output components does not exceed the
number of input components. This being the case, one has to ap-
propriately modify the construction presented above, so as to arrive
at a controller which stabilizes the nominal plant and F is such that
equation (1.53) has at least pr independent solutions, where p is the
number of output components. If this is the case, in fact, the previ-
ous arguments still show that the controller in question is a robust
regulator. <



Chapter 2

Output Regulation of
Nonlinear Systems

2.1 The regulator equations

As a preliminary step in our approach to the solution of the problem
of local output regulation, for a nonlinear plant modeled by equations

of the form .
= f(z,u,w
f( ) (2.1)
e =h(z,w),
we establish a set of elementary necessary conditions. First of all, we
look at the necessary conditions which derive form the existence of a
controller fulfilling the requirement of local internal stability in the
first approximation. To this end, let A, B, C, P, @, S, F, G. H be

matrices defined as follows

-4, 2., -2
gﬁ(mmm gz (0,0,0) gx(mm

P = [_] 0= [—] §= [—i] 2.2
g"’ (0,0.0) g“’ (0,0) ‘?;Z (0) (22)
n n

Pl o [Bl, [
9 1 (0,0) 9e ] (0,0) 9 (o)

Then, it is readily seen that the linear approximation of the sys-

tem
z = f(z,60(§),w)

£ = (¢, h(z,w)) (2.3)
w = s(w)
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at the equilibrium (z,u,w) = (0,0,0), can be expressed in the form

i

Az + BHE + Pw + ¢(z,&,w)
F¢+ GCz + GQu + x(z,€,w)
Sw + Y(w)

g m. 8-
|

where ¢(z,€,w), x(z,&,w) and ¢(w) are functions vanishing at the
origin together with their first order derivatives.

In this notation, the requirement of local asymptotic stability in
the first approximation is precisely the requirement that the (Jaco-

bian) matrix
A BH
J= ( e o ) (2.4)

has all eigenvalues with negative real part. Thus, it is immediately
concluded that the problem of local output regulation can be solved
only if the following condition holds.

Linear Stabilizability. The pair (A, B) is stabilizable and the pair
(C, A) is detectable. «

The condition thus indicated is only related to possibility of ful-
filling the requirement local asymptotic stability in the first approx-
imation, and only involves properties of the linear approximation of
the plant at the equilibrium (z,u,w) = (0,0,0). We now establish
another necessary condition, which no longer depends only on the
linear approximation of the plant at the equilibrium. The validity of
this additional condition reposes on the hypothesis that the exosys-
tem

w = s(w) (2.5)

for which the problem of output regulation is to be solved generates
trajectories which are bounded in time, but do not asymptotically
decay to 0 as time ¢t — oc. This hypothesis has been formalized in
terms of the concept of neutral stability, introduced earlier in Chapter
1.

Actually, it is easy to prove the following result.

Lemma 2.1 Consider the closed loop system (2.8). Suppose the ez-
osystem is neutrally stable. Suppose the Jacobian matriz (2.4) has
all the eigenvalues with negative real part. Then,

lim e(t) =0

t—00
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for each initial condition (x(0),£(0),w(0)) in a neighborhood of the
equilibrium (0,0,0) if and only if there exist mappings m: Wy — R
and 0 : Wy = R” (where Wy C W is @ neighborhood of w = 0), with
m(0) = 0 and o(0) = 0, such that

_a_‘l;s(w) = f(‘IT(UJ),O(U(w))vw)
-aa%s(w) = n(o(w),0) 20
h(m(w), w)

for all w € Wy.

Proof. Consider the closed loop system (2.3) and note that the
Jacobian matrix of the right-hand side, at the equilibrium (z,{, w) =
(0,0,0), has the following form

A BH « J
(GC F ) = ( ! s)
0 0o S
where J is a matrix with all eigenvalues with negative real part, and S
is a matrix with all eigenvalues with zero real part. Thus, the system

in question has a center manifold at (z,w) = (0,0), the graph of a
mapping (z,§) = (n(w), o(w)) satisfying

%S(U)) = f(1r(w),0(a(w)),w) (27)
2 sw) = nlow),hlr(u),u) . (2.8)

Indeed, (2.7) coincides with the first identity in (2.6). To prove
that also the second and third identity hold, choose a real number
R > 0, and let wg be a point of Wy, with |jwol| < R. By hypothesis
of neutral stability, the equilibrium w = 0 of the exosystem is sta-
ble, and it is possible to choose R so that the solution w(t) of (2.5).
satisfying w(0) = wp remains in Wy for all t > 0. If (2(0),£(0)) =
(z°,&) = (m(wo),o(we)), the corresponding solution (z(t),£(t)) of
(2.3) will be such that z(t) = m(w(t)) and £(t) = o(w(t)) forallt >0
because the manifold (z,¢) = (w(w),o(w)) is by definition invariant
under the flow of (2.3). Since the restriction of the flow of (2.3) to
its center manifold is precisely

W= s(w),
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any point on the center manifold sufficiently close to the origin is
Poisson stable by hypothesis. It can be shown that lim,_, e(t) = 0
implies
h(m(w),w) =0. (2.9)
For, suppose (2.9) is not true at some (7(wo), wo) sufficiently close
to (0,0). Then,
M = ||h(m(wo), wo)|| > 0

and there exists a neighborhood V of (m(wp), o(wp), wp) such that
(7 (w), w)ll > M/2

at each (w(w),o(w),w) € V. If lim;_,ooe(t) = 0 for a trajectory
starting at (w(wp),o(wo),wo), there exists T such that

Ih(m(w(t)), w(t)l} < M/2

for all t > T. But since (w(wp),o(wp),wp) is Poisson stable, then
for some ¢’ > T, (w(w(t')),o(w(t')),w(t')) € V and this contradicts
the previous inequality. As a consequence, the identity (2.9), which
coincides with the third identity in (2.6), must be true. Finally,
(2.9) together with (2.8) yields the second identity in (2.6), and this
completes the proof of the necessity.

To prove sufficiency, observe that, because of the third identity
in (2.6), the error satisfies

e(t) = h(z(t), w(t)) — h(r(w(?)), w(t)) .

As a consequence of the assumptions, the point (z,£,w) = (0,0,0) is
a stable equilibrium of (2.3). Then, for sufficiently small (z(0), £(0),
w(0)), the trajectory (z(t),&(t),w(t)) of (2.3) remains in a small
neighborhood of (0,0, 0) for all t > 0. Recall that the center manifold
(z,€) = (w(w),o(w)) is locally exponentially attractive, i.e. is such
that any trajectory of (2.3) satisfies

lz(t) — w(w(®)]| < Me™*|jz(0) — 7 (w(0))l]

for some M > 0 and a > 0 and all t > 0. Therefore, the continuity
of h(z,w) implies
lim e(t) =0.

t—oc

This completes the proof of the sufficiency. <



2.1. The regulator equations 31

Remark. It may be convenient to stress that the the result in-
dicated in the previous Lemma is based on the following simple ge-
ometric arguments. Observe that, under the hypothesis of neutral
stability, if the closed loop system is locally asymptotically stable
in the first approximation, then system (2.3) has two complemen-
tary invariant manifolds passing through (z,£¢,w) = (0,0,0): a sta-
ble manifold and a (locally defined) center manifold M,. The stable
manifold is the the set of all points (z,£,0) such that (z,£) belongs
to the basin of attraction of the equilibrium (z,£) = (0,0) of

= f(z,6(€),0)
£ = (&, h(z,0)) .

The center manifold, on the other hand, can expressed as the graph
of a mapping w — (z,£) = (m(w),o(w)). Since the center manifold
is by definition invariant and locally exponentially attractive, then
the property of asymptotic output regulation holds if and only if the
error map h(z,w) is zero on M, (last equation of (2.6)), in which
case to say that M, is invariant for (2.3) is equivalent to say that
m(w) and o(w) are solutions of the first two equations of (2.6). «

Using this result, it is very easy to establish a necessary condition
for the existence of solutions of a problem of output regulation, which
is described in the following statement.

Corollary 2.2 Consider the plant (2.1), with ezosystem (2.5). Sup-
pose the ezosystem is neutrally stable. There erists a controller which
solves the problem of local output requlation only if there exist map-
pings ©: Wy =5 R® and ¢: Wy = R™ (where Wy C W is a neighbor-
hood of w = 0), with m(0) =0 and ¢(0) = 0, such that

%s(w) = f(m(w),c(w),w) (2.10)

for allw € Wy.

Proof. 1t suffices to set

in the first one of (2.6) to conclude that the mappings £ = 7(w) and
u = c(w) necessarily fulfill the identities (2.10). <
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The set of equations (2.10), which are of paramount importance in
the solution of a problem of output regulation, are called the regulator
equations.

Remark. Note that, in the case of a linear plant

i=Ax+ Bu+ Pw
e=Cz + Qu,

with linear exosystem

W= Sw
the regulator equations reduce to the linear matrix equations intro-
duced in section 1.5. In fact, set 7(w) = [lw and ¢(w) = 'w, where

IT and I" are matrices of appropriate dimensions. Then, equations
(2.10) reduce to the equations

IS = AN+ BI'+P
0 = ClI+@Q

which have exactly the form (1.34). «

So far we have identified two necessary conditions for the solution
of the problem of local output regulation: linear stabilizability and
existence of a solution for the regulator equations. However, it hap-
pens that these conditions are not yet sufficient for the solution of
the problem in question. A third condition is needed, which will be
described in later the next section. For the moment, we conclude the
discussion with an interesting interpretation of the result indicated
in the previous corollary. Recall that the first equation in (2.10) ex-
presses the property that the graph of the mapping z = w(w) is an
invartant manifold for the composite system

& = f(a,c(w), v -_
w = s(w)
while the second one expresses the property that the error map e =
h(z,w) is zero at each point of this invariant manifold. Let w* be
any initial state of the exosystem and let

w*(t) = @ (w")

denote the corresponding exogenous input. If the initial state of the
plant is precisely
z* = m(w")
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and the input to the plant is precisely equal to

u*(t) = c(w'(t)) ,

it is readily concluded that
z(t) = m(w*(t)) ,

for all t > 0 (note that, if w* is sufficiently small, w*(t) is defined for
all ¢ > 0 and so is m(w*(¢))). Thus, since h(m(w),w) = 0, we have
e(t) = 0 for all ¢ > 0. This argument shows that the control input
generated by the autonomous system

v = cw) (2.12)

from the initial state w(0) = w* is precisely the input needed to
obtain, for the corresponding ezogenous input w*(t), a response pro-
ducing an identically zero error (provided. of course, that the initial
condition of the plant is appropriately set, i.e. at z* = w(w")).

This interpretation leads to the intuition that a controller solving
the problem of output regulation must generate a control input con-
sisting of two components: a first component u*() = ¢(w*(t)) capa-
ble of yielding e(t) = 0 for all ¢ whenever the initial state of the system
is appropriately set (namely, at z* = m(w")), and a second compo-
nent capable of rendering the particular trajectory z*(t) = m(w*(t))
locally exponentially attractive.

2.2 The internal model

In the previous section we have shown that, in addition to the triv-
ial condition of linear stabilizability, a necessary condition for the
solvability of a problem of output regulation is the existence of two
mappings 7 : Wy = R* and ¢ : Wy —» R™ which solve the regula-
tor equations (2.10). As we will see in this section, there is a third
condition which needs to be fulfilled for the problem of output reg-
ulation to be solvable, which can be expressed as a special property
of the system (2.12) (where c¢(w) is any mapping which renders the
regulator equations (2.10) satisfied, for some suitable w(w)).

In order to conveniently describe this additional condition, a pre-
liminary digression about the notion of immersion is in order. Let
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{X, f,h} denote the autonomous system

i = f(z)
y = h(z),
with state z € X and output y € R™, in which we suppose f to be

a smooth vector field and h a smooth mapping, with f(0) = 0 and
h(0) = 0.

(2.13)

System Immersion. System {X,f,h} is immersed into system
{X', f',h'} if there exists a smooth mapping 7 : X — X', satisfying
7(0) =0 and

h(z) # h(z) = h'(7(z)) # h'(7(2)),

such that

i) = @)
he) = Wi@)
forallz € X. <

Two conditions indicated in this definition express nothing else
than the property that any output response generated by {X, f. h}
is also an output response of {X’, f',h’}. In fact, the first condition
implies that the flows <I>{ (z) and <1>{ ’(:c’ ) of the two vector fields f
and f’ (which are T-related), satisfy

7({ (x)) = ® (7(z))
for all z € X and all £ > 0, from which the second condition yields
h(@{(z)) = K(7(®] ())) = K(2] (r(2))),

for all z € X and all £ > 0, thus showing that the output response
produced by {X, f,h}, when its initial state is any z € X, is a re-
sponse that can also be produced by {X’, f/ h’}, if the latter is set
in the initial state 7(z) € X'.

The importance of the notion of immersion in the problem of
output regulation depends upon the following crucial result.

Lemma 2.3 Consider the plant (2.1), with ezosystem (2.5). Sup-
pose the exosystem is neutrally stable. There exists a controller which
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solves the problem of local output regulation only if there ezist map-
pings £ = w(w) and u = c(w), with 7(0) = 0 and c(0) = 0, both
defined in a neighborhood Wy C W of the origin, satisfying the con-
ditions 5
a=s(w) = flr(w)c(w),v)
0 = h(n(w),w),

for all w € Wy and such that the autonomous system with output

w = s{w)

u=cw),
s tmmersed into a system

£ =p(6)

u=1({),

defined on a neighborhood =g of the origin in RY, in which ©(0) =0
and v(0) = 0 and the pair of matrices

1s detectable.

Proof. Suppose a controller of the form
£ =n(¢.e)
u = 6(¢)

solves the problem of output regulation. Then, by Lemma 2.1, there
exist mappings z = w(w) and £ = o(w), with 7(0) = 0 and ¢(0) = 0.
such that (2.6) are satisfied. Set

c(w) =60(c(w)), () =6(),  »(§) =n(.0)

and observe that 7(w) and c(w) satisfy the conditions (2.10) while
w(w) and y(w) satisfy

g—z)-s(w) = p(o(w)), c(w) = y(o(w)) ,

(2.15)

thus showing that {Wy, s, c} is immersed into {Zg, ¢, v}, where =y =
O'(Wo).
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Observe now that, by definition, the mappings ¢(£) and (&)
introduced above are such that

o= ladly o= [

Since, by hypothesis, the controller (2.15) stabilizes the linear
approximation of the plant at the equilibrium (z,¢,w) = (0,0,0),
the pair of matrices (2.14) is such that all the eigenvalues of the

matrix
J= ( A BI‘)
“\GC &

have negative real part. Since
A BT A 0 B
(GC @)‘(Gc @)*(o)(o )

A BT A BT 0
(e 2)=(5 5)+(c)ec o
it is concluded that the pair
A 0 ) (B
GC o)’ 0
is stabilizable and the pair
A BT
(5 %) (o
is detectable. The latter condition implies, in particular, that (T, ®)
is detectable. <
Thus, a necessary condition for the existence of a solution of the
problem of output regulation is that the mapping c(w), which is
supposed to satisfy (2.10) for some m(w), be such that {Wy,s,c} is
immersed into a system having a detectable linear approximation. As
we have seen before, a system {X, f, h} is immersed into another sys-
tem {X', f', h'} whenever any output response generated by {X, f,h}
is also an output response of {X’, f',h'}. Thus, a necessary condi-
tion for output regulation is that any output response of the sys-
tem {Wy,s,c} is also an output response of some auxiliary system

{Z0,%,7} having a detectable linear approximation (at the equilib-
rium §{ = 0). As shown at the end of the previous section, for each
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initial state w* € Wy, the output response of { Wy, s, ¢} is precisely the
control input needed to yield an error which is identically zero when
the plant is driven by the ezogenous input w*(t) = ®j(w*). In other
words, the result expressed in the previous Lemma says that all the
control inputs needed to produce an identically zero error must be
generated by some appropriate autonomous dynamical system with
output {=g,,~}, having a detectable linear approximation (at the
equilibrium £ = 0). This system is called an internal model (of the
control inputs required to force the error to be identically zero).

We will show in the next section that the existence of an inter-
nal model essentially determines the existence of a solution of the
problem of output regulation. However, before proceeding with this
analysis, in view of its importance in many situations, we discuss
hereafter the special case of when a given nonlinear system is im-
mersed into a linear and observable system. As it is well known, this
possibility is best expressed in terms of properties of the so-called
observation space.

Observation Space The observation space O of {X, f,h} is the
smallest subspace of C°(X) (the set of all C* functions defined on
X with values in R) which contains h;,...,hs, and is closed under
differentiation along the vector field f. <

In fact, the following result hoids.

Proposition 2.4 The following are egquivalent:

() {X, f.h} is immersed into a finite dimensional and observable
linear system,

(ii) the observation space O of {X, f,h} has finite dimension,

(iii) there ezist an integer g and a set of real numbers ag,ay,...,aq-1
such that

Lih(w) = aoh(w) + a1 Lyh(w) + - + ag1 L] ' h(w) .
Proof. To prove that (ii) implies (i) consider, for the sake of
simplicity, the case in which m = 1 and suppose the observation

space O of {X, f,h} has finite dimension r. Then, by definition,

h(z), Lih(2),.. ., L} h(z)
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is a basis of ©. In particular the function L%h(z), which is an element
of O, can be expressed in the form

f/‘h.(.’l,') = aph(z) + alL/h(l‘) R ar_lL}'lh(a:)

for some set of real numbers a;, 0 < k < r — 1. Thus, {X, f,h}
is indeed immersed into an observable linear system {R", f',h'} in
which

F(e) = @) =g

via

r(z) =
Lz:fh(:c)
Ly h(z)
The extension of these arguments to the case in which m > 1 is
straightforward.

To prove that (i) implies (iii), observe that by definition

) = Fria)
h(z) = Hr(z),

where F' and H are matrices of real numbers. From this it is easy to
deduce that
L%h(z) = HF*r(z)

for any k > 0. Let
d(X) =po+prA+-+pg1 AT+ N
denote the minimal polynomial of F. Then
poh(z) + p1Lyh(z) + -+ + pe1 L h(z) + LIh(z) = Hd(F)7(z) = 0

from which the result follows.
The proof that (iii) implies (ii) is immediate. <
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2.3 Necessary and sufficient conditions for
local output regulation

It is possible now to describe a set of necessary and sufficient con-
ditions for the existence of a solution of the problem of local output
regulation. These conditions are centered, as expected, on the exis-
tence of a solution of the regulator eguations (2.10) and can be ex-
pressed in terms of the existence of a solution (7(w), c(w)) satisfying
a number of additional requirements.

Theorem 2.5 Consider the plant (2.1), with ezxosystem (2.5). Sup-
pose the ezosystem is neutrally stable. The problem of local output
regulation is solvable if and only if there exist mappings ¢ = m(w) and
u = c(w), with 7(0) = 0 and ¢(0) = 0, both defined in a neighborhood
Wo C W of the origin, satisfying the conditions

or
ams(w) = f(n(w),clw),w) (2.16)
= h(ﬂ'(w)a w) ’
for all w € Wy and such that the autonomous system with output
w = s(w)
u=c(w),
is immersed into a system
€= p(€)
U= 7(5) )

defined on a neighborhood =g of the origin in RY, in which ¢(0) =0
and ¥(0) = 0 and the two matrices

Oy oy
3= [_] .= |3 2.17
9 Je—o 0 Je=0 (2.17)
are such that the pair
A 0 B
(NC q»)’ (0) (2.18)
is stabilizable for some choice of the matriz N, and the pair
A BT
(C 0), (0 o ) (2.19)

is detectable.
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Proof. The proof of the necessity uses the same arguments as
those given in the proof of Lemma 2.3 and needs not to be repeated.

In order to prove sufficiency, choose N so that (2.18) is stabi-
lizable. Then, observe that, as a consequence of the hypotheses on
(2.18) and (2.19), also the pair

(1\;40 1;1‘), (ﬁ)

is stabilizable (no matter what I" is), and the pair

A BT
€0 (we o)
is detectable (no matter what N is). Thus, the linear system char-
acterized by the triplet of matrices

P ) e=(2) =i o

is stabilizable by output feedback, i.e. there exist K, L, M so that
A BT B
(v a) (o)
L(C 0) K
has all eigenvalues with negative real part.
Now, consider the controller
fo= K&+ Le
&L= (&) + Ne (2.20)
u= M+ (&) .

It is easy to see that the controller thus defined solves the problem
of output regulation. In fact, it is immediate to see that the Jacobian
matrix of the vector field

f(xa M&O + 7(61)’ 0)
F($7§0’§1) = ( Kéo + Lh(:l:,O) )
‘P(fl) + Nh(x3 0)

at (z,£o,&1) = (0,0,0), which has the form

A BM BT
(LC K 0),

NC O ¢
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has all eigenvalues with negative real part. Moreover, by hypothesis,
there exist mappings z = n(w), u = ¢(w) and & = 7(w) such that
(2.16) holds and

%s(w) =o(r(w),  c(w)=(r(w)).

This shows that the sufficient conditions of Lemma 2.1 are satisfied

by
(§) == ()

and completes the proof of the sufficiency. «

The result described by this Theorem shows that there exists a
solution of the problem of local nonlinear output regulation if and
only if:

(i) the regulator equations have a solution {m(w),c(w)}, with c(w)
such that

(ii) there exists an internal model {y(£),v(£)}, and the latter is such
that

(iii) appropriate stabilizability /detectability conditions hold for the
linear approximation of the plant, as well as of the internal model,
at the equilibrium point about which regulation is to be achieved.

It is worth observing that standard stabilizability/detectability
tests show that the condition that the pair (2.18) is stabilizable im-
plies the condition that the pair (A, B) is stabilizable and, similarly,
the condition that the pair (2.19) is detectable implies the condition
that the pair (C, A) is detectable. Thus, the conditions of Theorem
2.5 include — as expected — the trivial necessary conditions of local
stabilizability requested for the fulfillment of condition local asymp-
totic stability in the first approximation.

Conversely (see also Lemma 1.8) if the pairs (A, B) and (&, N)
are stabilizable, the pairs (C, A) and (T, ®) are detectable, and the

matrix A-)M B
( - 0) (2.21)

is nonsingular for every A which is an eigenvalue of & having non-
negative real part, then the pair
(5)
0

(vc o)
NC @)’
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is stabilizable and the pair
A BT
co. (5 %)
is detectable.
The proof of the sufficiency of Theorem 2.5 shows how to actu-
ally construct a controller which solves the problem of local output

regulation. This controller consists of the parallel connection of two
systems: a system modeled by the equations

& = p(&1) + Ne

2.22
u=n(&), 222)
and a system modeled by the equations
0= K&+ Le
§°= Mg’ (2.23)

The first subsystem contains an internal model of the control
inputs required to force the output to be identically zero, and the N
is chosen in such a way that the interconnection

i o= fo(E) +uw)
& = (P(ﬁl) + Nh(a:,w)
e = hiz,w),

is locally asymptotically stabilizable in the first approximation. The
role of the second subsystem locally is simply that to render the
entire closed loop system locally asymptotically stable in the first

approximation.
Observe that the identities
%Z—m = F(m(w),2(r(w)), w)
T

o s(w) = p(r(w))
which hold by construction, prove that the submanifold
Mc = {(1:7&0,&1’ ‘U)) T = 7r(w),§0 = 0)&1 = T(’LU)}

is an invariant manifold of the composite system

t = f(z,M& + (&) w)
§0 K§0 + Lh(.’l:,?.U)

& ¢(€1) + Nh(z,w)

w = s(w)

(2.24)
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which is nothing else than the closed loop system driven by the
exosystem. On this manifold the error map e = h(z,w) is zero.
This invariant manifold is locally exponentially attractive and there-
fore, as discussed above, for any sufficiently small initial condition
z(0), £0(0), £1(0), w(0), the response of (2.24) is such that the error
asymptotically converges to zero as t tends to 0o.

The following Corollary provides a simple set of sufficient condi-
tions for the existence of a solution of the problem of local output
regulation.

Corollary 2.6 Consider the plant (2.1), with ezosystem (2.5). Sup-
pose the ezosystem is neutrally stable. Suppose the pair (A, B) is
stabilizable and the pair (C,A) is detectable. Suppose there exist
mappings £ = w(w) and u = c(w), with 7(0) = 0 and ¢(0) = 0,
both defined in a neighborhood Wy C W of the origin, satisfying the
conditions (2.16). Suppose also there erists integers py,...,pm and
functions ‘

i : RPi — R

(€10 = ilGry- 0 G)

such that, for all1 < ¢ < m, thei-th component ¢;(w) of c(w) satisfies

LPici(w) = ¢i(ci(w), Lsci(w), ..., LB ey(w)) . (2.25)
for all w € Wy. Set o6
dij = [}’f;](o,...p)

and
di(A) = dio +d X + ...+ dip 1 AT = AP

Finally, suppose that the matriz

(A ‘C’\I g ) (2.26)

is nonsingular for every A which is a root of any of the polynomials
di1(A), ..., dm()) having non-negative real part. Then there erzists a
controller which solves the problem of local output regulation.

Proof. Condition (2.25) implies that {Wp, s, ¢} is immersed into
a system
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) (fﬂ)
-, L=} -}, t=1...,m
£m E“»Pi

§io

w(&1) €3
¢(f)=( ), Sot(f)= ) ) i=1)--~,m

©(€m) §ipi

¢i(§ila o aéipi)

v(€1)
7(§)=( )1 7i(§)=£ilv i=1,...,m.
¥(Em)

. In this case, the eigenvalues of @ are exactly the roots of the

polynomials dy(A),...,dm(A). After having chosen a matrix N such
that the pair (®, N) is stabilizable, for instance

N = diag(Ny, ..., No)

with
Ny = c0l(0,0,...,0,1),

one can conclude that the remaining conditions of Theorem 2.5 hold
since the matrix (2.26) is nonsingular for every A which is an eigen-
value of ®. <

Finally, we discuss the case of when the problem of regulation is
solved by means of a linear controller.

Corollary 2.7 Consider the plant (2.1), with ezosystem (2.5). Sup-
pose the ezosystem is neutrally stable. Suppose the pair (A, B) is sta-
bilizable and the pair (C, A) is detectable. The problem of local outprit
regulation 1s solved by a linear controller only if there exist mappings
z = w(w) and u = c(w), with w(0) = 0 and ¢(0) = 0, both defined
in a neighborhood Wy C W of the origin, satisfying the conditions
(2.16) and such that, for some set of g real numbers ag,a1,...,0q-1,

Lic(w) = ape(w) + a1 Lyc(w) + - -+ + ag—1 LI e(w) , (2.27)

for all w € Wy,
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Conversely, if these conditions hold and if the matriz

(A -C,\I 13) (2.28)

is nonsingular for every A which is a root of the polynomial
d(A) =ag+ @A+ ... +aq A9 =\

having non-negative real part, there ezists a linear controller which
solves the problem of local output regulation.

Proof. Necessity. Condition (2.27) is indeed a necessary condition
for the existence of a linear controller

£ =Ft+Ge
u= HE¢

solving the problem of output regulation. In fact, if such a controller
exists, from the proof of necessity in Theorem 2.5 it is deduced that

-g—z)s(w) = Fo(w), c(w) = Go(w)
for some mapping £ = o(w). Thus {Wpy,s,c} is immersed into a
linear system and, by Proposition 2.4, condition (2.27) necessarily
holds.

Sufficiency. Condition (2.27) implies (see Proposition 2.4) that
{Wo, s, ¢} is immersed into a linear observable system. In particular,
it is very easy to check that {Wy,s,c} is immersed into the linear
system

£ =®¢
u=T¢
in which
b= diag(@o, ey @0)
I' = diag(T,...,T0)
and
0 1 0 0
0 0 1 0 _
®p = . , To=(1 0 0 0)
0 0 O 1

ag ay a2 - Gg-1
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In this case, the minimal polynomial of ¢I> is equal to d()). After
having chosen a matrix N such that the pair (&, N) is stabilizable,
for instance

N = diag(Ny, ..., Ng)
with
Ny = col(0,0,...,0,1),
one can conclude that the remaining conditions of Theorem 2.5 hold

since the matrix (2.28) is nonsingular for every A which is an eigen-
value of ®. «

2.4 The special case of harmonic exogenous
inputs

We discuss in this section the special case in which the class of ex-
ogenous inputs against which regulation is to be achieved consists
of periodic functions having a finite Fourier series. As seen in the
introduction, inputs of this kind are generated by a linear exosystem

w = Sw

in which the matrix S has the following form

So 0 - 0
05 0 (2.29)
0 0 --- S

with Sg = 0 (we consider here the more general case in which the
exogenous input possibly have a nonzero mean value), and

0 B ) ( 0 B )
S = < e S = .
! ~-p 0 ™ ~B 0
Consistently with the notation used for the blocks of S, we denote
the state vector w of this system as

w = col(wo, w11, W12, . . -, Wk1, Wk1) -

Since the exosystem is a linear system, we wish to examine in
particular the problem of when of nonlinear regulation can be solved
by means of a linear controller. In view of the results established at



2.4. The special case of harmonic exogenous inputs 47

the end of last section, this requires in particular that the mapping
c(w) (which, together with some m(w), renders the identities (2.16)
satisfied) is such that autonomous system with outputs

w= Sw
u = c(w)

is immersed into a linear system (or, what is the same, condition
(2.27) is fulfilled).

. It is not difficult to see that this is the case whenever the mapping
c(w) is a polynomial in the components wyy, w1y, ..., wk1. wk) of w.
For, consider for simplicity the case m = 1, let p be a fixed integer
and let P denote the set of all polynomials of degree less than or
equal to p in the variables w1y, w12, .., Wk, wk; with coefficients in
R and vanishing at w = 0. P is indeed a finite-dimensional vector
space over R. If s(w) is linear in w and ¢(w) € P, then

Lsc(w) = gc-s(w)

ow

is still a polynomial in P. Observe that mapping

D: P = P
a 2.30
c(w) — a—gs(w) (2:30)
is an R-linear mapping from a finite dimensional vector space to itself
and let

dA) =M —gp1 A" = —a1d—ag

denote its minimal polynomial. Then
D‘7~aq.1D"'1 — =g D -0l =0.

We observe from this property that a relation like (2.27) indeed
holds for any polynomial c(w) € P. Identical arguments apply in
case m > 1.

Note, however, that the class of all polynomials (of degree not
exceeding a fixed number) is only just one particular class of functions
for which a condition of the form (2.27) holds. For example, it is
easy to check that, in the simple case where the matrix (2.29) above
consists of only one block S}, the class of functions ¢(w) defined by

c(w) = ¢(w} +wh)p(w)
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in which ¢(r) is any arbitrary function of the real variable r and p(w)
is any polynomial (of degree not exceeding a fixed number), is still
such that a condition of the form (2.27) holds. In fact, since

2 2
O(wy + wz)slw -0,
ow
we have

dc Op
%Slw = ¢(w? + wg)%slw .

Therefore, if p(w) € P,
Lic(w) — ag—1 LI e(w) — - -+ ~ a1 Lsc(w) ~ apc(w)
= $(w? + w)(D? — ag1 DIV = -~ — ;D — agl)p(w) = 0.
In the following Theorem, we provide a simple characterization
of the set of all mappings c(w) for which a condition of the form
(2.27) holds, in the case of a linear exosystem. For convenience, as

in the proof of Lemma 1.2, we will express c(w) as a function of the
variables

Xi=wn - jwig Xy =wi + jwip (2.31)

which are related to the original variables w;;,w;» by an invertible
transformation.

Theorem 2.8 Suppose c(w) is analytic, in a neighborhood of w = 0,
and s(w) = Sw, with S as in (2.29). The following statements are
equivalent.

() There is an integer ¢ > 0 and a set of real numbers ag,a1,...,04-1
such that

Lic(w) = age(w) + a1 Lyc(w) + -+ + ag—1 LI ec(w) ,
(ii) There is a finite set R of nonnegative real numbers such that

c(w) = v B(W0)iyjy iy XV XP - X X%
i(f1—71)B1+-+(x—Jjk)Bk)ER

(iii) There is a finite set R of nonnegative real numbers such that

2 2
c(w) = Z &5, -6, (wo, wi; + Wig, ", wil + wi2)A61'"6k
161814--+6x Bk IER

where Dg, .4, = Yl's’ ---Yk‘s“ =+ }7161 "'Yk's* and ¥; = X; or X;.
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Proof. Consider, for the sake of simplicity, the case m = 1.
“(i) & (ii)". Since c(w) is analytic, it can be expanded as
o(w) = 3 @iy (wo)wiwhh - wihuly .
Using (2.31), it is also possible to express c(w) in terms of X;, X;, as
c(w) = Z bhjl....-kjk(wo)X;"Xih o X,';"J_(;:"
where by, j, .., j, (wo) are such that
bivjr-ige (00) = Biyiyerjnin (Wo)

because ¢(w) is a real-valued function.
It is easy to check that

Ls(thXijl " 'Xlikjl{k) = ’\ix.‘ir--ik.‘ileile{l "' Xlik)-(jk |

where
Aivjiinge = J((61 = J1)Br + -« - + (8 = Jx)Br)

which shows that X X' ... X} XJ* is an eigenvector of the linear
operator Ly, and j((1; —j1)B1 +- - -+ (ix — Jik) Bk) is the corresponding
eigenvalue. Consider any bijection from the set of positive integers
N to the set o o
Q={XPX] - XP XY

This bijection defines a complete order on the set Q. The function
¢(w) can be expressed in the following form, using infinite dimen-
sional row vectors and column vectors,

c(w):(--~ 1 --9) biljl...ikjk(wo)X;IXijl---.X;"X,’Zk

where the column vector is in the order of 2, however only the terms
with nonzero coefficients b;, j, ..., j, (wo) are listed in it.
Note that

i) v te ¥k
L,bgljl...,'kjk(wo)XIJXf “.'Xk X;: ) '
T v e Y Ik
= biyjyinge (Wo) Lo X7 X7+ XpF XGH
[ T A, Yy, Yk VI
- ’\11.11-'~tk.1kb11.11---1k.1k (wO)Xl Xl Xk Xk .
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Thus
(c(w) Lsc(w) L2c(w) --- Lie(w))T
1
RS
= )"iljz'--ikjk bilj;---ikjk(wo)X;IXfl X;"Xi_“
>‘1r1j1"'ikjk

Condition (i) can be fulfilled if and only if, for some integer ¢ > 0
and real numbers ag. ..., @¢-1

1
/\z;j]mim
(a0 a1 a2 -+ =1)| - A .. =0
9.
2131 e Tk
However, since the matrix on the right-hand side is a Vandermonde
matrix, a relation of this type can hold, for some finite ¢. if and only
if the set

{Migringe t Biggieeise (wo) 7 0}
has onlv finite many different elements, i.e. if the set
R = {|(i2 = j1)Br + -+ - + (i = k) Bk : biyjyomipsa (wo) # 0}
has only finite many different elements. This proves that statements
(1) and (ii) are equivalent.

“(ii) < (iil)". We have already observed that
Biys-rinie (W0) = iy gy (w0) -

Combining these two terms and factoring out the common factors,
we obtain

Biy iyt (W) X KT o XPE X 4 By gy (wo) XX - X X 1k
= (X1X1)% - (X Xi) ™
(bilj:-"ikjk ("“()0)}/16l e Yk6k+5iljl"'ikjk ("“()0)}_/16l e }—/kék)

where s, = min(ip,j,) for A = 1,....k. The fact that X;X; =
w? +w% and this relation imply that (ii) and (iii) are equivalent. <
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2.5 Approximate regulation

In the previous sections, we have seen that a fundamental ingredi-
ent in the construction of a controller which solves the problem of
output regulation is the internal model, i.e. an autonomous system
with outputs {Zo, ¢,7} into which {Wy, s, ¢} is immersed. We have
also seen that, if the exosystem is a linear system with eigenvalues
on the imaginary axis, an internal model (more precisely, a linear
and observable internal model) can easily be constructed whenever
the mapping c¢(w) is known to satisfy either one of the equivalent
conditions (ii), (iii) of the previous Theorem 2.8. In general, how-
ever, the construction of an internal model is not an easy task, and
this suggests the idea of using an approzimate internal mode!l (in
a sense which will be clarified below), to the purpose of obtaining
epprozimate output regulation.

More precisely, it can be shown that, for any integer p > 0, it is
always possible to find a linear internal model (of suitable dimension
depending on p) with the property that the corresponding controller
yields an error which asymptotically converges to a function é&(t)
satisfying an estimate of the form

lle@®ll < E(lw®))
where E : R>o — R>o is a function such that

E(r)

r—=0+ rP

=0 (2.32)

i.e. is infinitesimal of order higher than p as r — 0.

To this purpose, suppose the integer p is fixed, and consider again
the linear mapping D defined by (2.30) in the previous section. Let

d()) = A7 — aq_l)\"—l ~.s—0a1A—ag

denote its minimal polynomial and let &, € R?*? be a matrix (with
real entries) having minimal polynomial d(A). Observe, also, that it
is always possible to find a vector N, € R9*! and a vector T, € R**?
such that the pair (®p, Ny) is controllable and the pair (I'p, ®,) is



52 Chapter 2. Qutput Regulation of Nonlinear Systems

observable. Using the triplet (®p, Np,I'p) thus determined, set

& 0 --- 0 Ny, 0 --- 0
o]0 ¥ - 0 C N= 0 N, -~ 0
0 0 M @p 0 0 e Np
I, 0 - 0
r_|0 Tp - 0 ,
(2.33)

where ® € R™*™¢ N € R™*™ T' € R™*™ . The triplet (®,N,T)
defines a system consisting of the aggregate of m identical copies of
the linear system characterized by the triplet ($,, Np,T'p).

Consider again a controller having the structure of the controller
constructed in the proof of Theorem 2.5, that is a controller of the
form

{:0 = K&+ Le
§1 = ®& + Ne (2.34)
u= M§o+1"§1 .

Suppose the pair (A4, B) is stabilizable, the pair (C,A) is de-
tectable, and the matrix (2.21) is nonsingular for every A which
is a root of the minimal polynomial of Dy. Then it is possible to
choose (see section 2.3) K,L,M in (2.34) so that the equilibrium
(z,&0,&1) = (0,0,0) of the associated closed loop system

:i': = f(x’M§0 + rglo)
;0 = K&+ Lh(Z,O) (235)
& =% + Nh.(a:,O) R

is locally exponentially stable, i.e. the matrix
A BM BT
(LC’ K 0 ) (2.36)
NC 0 ®

has all eigenvalues with negative real part.

If this is the case, then each (sufficiently small) exogenous input
produces a well-defined steady-state response. In fact, observe that
system (2.1), controlled by (2.34) and driven by the exosystem

w=5Sw.
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that is the composite system

:i_: = f(a:’M{O + r{law)
§o = K&+ Lh(z,w)
&1 = 8¢ + Nh(z, w)
w=Sw,

(2.37)

has a center manifold at (z, £, &1, w) = (0,0,0,0). The latter can be
expressed in the form

M. = {(z,%,&,w) : z = T(w), & = do(w), & = 51(w)}

i.e. in the form of the graph of 2 mapping

#(w)
w —r (50(1.!)) )
71(w)

where 7(w), 6g(w), 6; (w) are defined in a neighborhood of w = 0 and
satisfy the following system of partial differential equations

%Sw = f(#(w), M&o(w) + 51 (w), w)
%Sw Kao(w) + Lh(7(w),w) (2.38)
601

3—-Sw &5, (w) + Nh(w(w),w) .

The manifold in question is invariant and locally exponentially
attractive for the composite system (2.37), which means that - for
every initial condition (z(0), £ (0),£2(0), w(0)) in a neighborbood of
(0,0,0,0) - the response of (2.37) converges, as t — 00, to a uniquely
defined steady-state response, which is determined only by the tra-
jectory w(t) of the exosystem and has the form

x()=7”f( (t))
§o(t) = Fo(w(t))
&i(t) = a1 (w(?)) -

Consequently, the regulated output converges toward a steady-state
response of the form
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From this analysis it is deduced that if
Ih(7(w), w)|| < E(jlwll) , (2.39)

where E : R>q — R0 is a function satisfying (2.32), then the desired
goal of having an error asymptotically converging to a function é&(2)
satisfying an estimate of the form

le@)ll < E(llw(t)l)

is achieved.
As a matter of fact, the controller (2.34) is such that the condition
(2.39) holds.

Proposition 2.9 Consider the plant (2.1) controlled by (2.84). Sup-
pose the ezosystem is a neutrally stable linear system. Let @, N,T" be
chosen as in (2.83) and let K,L,M be such that the matriz (2.96)
has all eigenvalues with negative real part. Then there ezists a map-
ping %(w) which satisfies (2.38) for some Go(w),d)(w) and is such
that

h(#(w), w)ll < E(llwl)

where E(w) is infinitesimal of order higher than p as |Jw]j — 0.

In order to prove Proposition 2.9 we first establish the following
Lemma.

Lemma 2.10 Let N, € R?*! be nonzero. Suppose that, for each
g-tuple (¢1,..., ¢g) € P9 there exists a g-tuple (01,...,04) € P? and
v € P satisfying

&1 Do, (23]
% Day 9q
Then, (¢1,--.,9q) = (0,...,0) tmplies v = 0.

Proof. Define the linear mappings
F: P o P

6@
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and
G: P =» P9
v = Npv.

The hypothesis of the Lemma is that
im(F) + im(G) = P™. (2.40)

It is easy to check that F(o1,...,04) = 0 has at least p independent
solutions, where p = dim(P) (see Lemma 1.9). Thus, dim(im(F)) <
gp — p. Moreover, dim(im(G)) < p. This, together with (2.40) shows
that im(F) Nim(G) = {0} and the result follows. <«

Using this result it is easy to arrive at the desired conclusion.

Proof. (of Proposition 2.9). Observe that by hypothesis, the con-
trol law (2.34) locally exponentially stabilizes system (2.35). Thus,
for any function A(w), the system

j_: = f(x7M€0 + FE],‘LU)

o = K& + Lh(z,w)

&1 = &6 + Nh(z,w) + Aw)
w=Sw

has a center manifold at (z, &, &1, w) = (0,0,0,0). In other words, for
any arbitrary vector A(w), there exist {(w),no(w), m (w) such that,

9¢

505w = f(¢(w), Mro(w) + T (w), w)
%Sw = Kno(w) + Lh(¢(w),w) (2.41).
%Sw = &m (w) + Nh({(w),w) + A(w) .

In view of the particular structure of & and N, the third of these
equations can be written, after having split m (w) and A(w) as

N (w) An(w)
m(w) = : ) Mw) = : ’
nlm(w) Alm(w)
in the form
Omi gy = Bpmi(w) + Nphi(((w), w) + Xi(w) , (242)

ow



56 Chapter 2. Qutput Regulation of Nonlinear Systems

where h;({(w),w) is the i-th component of A({{w}, w).
Suppose now the entries of the (arbitrary) vector )\;(w) are in P
and (uniquely) decompose y;(w) and h;(¢(w),w) as

milw) = n;(w) +ﬂ¥i(w)
hi(C(w),w) = 7 (w)+E(w)
with all entries of n};(w) and v} (w) in P and
)l _ )l _
fwli—0  flw]iP lwii—0  Jwll?
Clearly (2.42) yields
aﬂ%i 1 1
'51-0-510 = ®pn1i(w) + Npv; (w) + i(w) .

Since A;(w) is arbitrary, it is concluded that ®, and N, are such
that the hypothesis of Lemma 2.10 is fulfilled. Thus, this relation
precisely shows that for each g-tuple (¢, ..., ¢,) € P there exists a
g-tuple (01,...,04) € P? and 7 € P satisfying

¢1 DU] (25}
(2)- (22) -0 () 30
&g Do, Og

Thus, using Lemma 2.10 we can conclude that if M\i(w) = 0, then
(ap) =
7 (w) = 0.

Now, observe that equations (2.38) and equations (2.41) are iden-
tical, if AM(w) = 0 (with the obvious replacement of 7 (w), dp(w),
g1(w) by ¢(w), no(w), m(w)). Thus, from the previous arguments
we deduce that the solution #(w), 6o(w), &1(w) of (2.38) is such that,
if h(7(w), w) is decomposed as

h(7 (w), w) = 7' (w) + 7¥*(w)
where the entries of v (w) are in P and

2
Il _
lwii—0  [lw]i?
then necessarily v} (w) = 0.
In other words

o IBE@)L W) _

0
hoij—0  |jw|l?

and this concludes the proof of the Proposition. <



Chapter 3

Existence Conditions for
Regulator Equations

3.1 Linear regulator equations and transmis-
sion zeros

The purpose of this Chapter is to show that the existence of solutions
for the pair of equations

I

—s(w)

aw f(w(w),c(w),w) (31)

h(w(w), w) ,

which, as we have seen in the previous Chapter, determine the exis-
tence of solutions of the problem of local output regulation, is inti-
mately related to the properties of the so-called zero dynamics of the
nonlinear system

z = f(z,u,w)
w = s(w) (3.2)
e = hiz,w) .

As we will explain later in the next section, the zero dynamics of a
given nonlinear system is essentially the collection of all the (forced)
state trajectories which are compatible with the constraint that the
output is identically zero for all times. In the case of a linear system,
the qualitative behavior of the these trajectories is determined by the
zeros of the transfer function of the system itself (for a single-input
single-output system) or by the more general notion of transmission
zeros (for multi-input multi-output systems).
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It is well known that, in a linear system, the notion of transmis-
sion zeros bears an important relation with the existence of solutions
the linear version of the regulator equations. The latter, as seen in
section 1.5, in the case of a controlled plant modeled by equations of
the form

= Az + Bu+ Pw
w= Sw (3.3)
e=Cz+ Qu,

reduce to the pair of linear matrix equations

IS = All+ BT+ P

0 = CI+Q. (3.4)

For the sake of completeness, we review in this section the notion
of transmission zeros and the relation between this notion and the
existence of solutions of (3.4). Consider a linear system

z = Az + Bu

i (3.5)

with state z € R*, input © € R™ and output e € R™ (note that the
same number of input and output components is assumed). Suppose
the determinant of the matrix

(A 'CM 13) (3.6)

is not identically zero (note that the latter condition is equivalent to
the condition that the transfer function matrix of the system, namely
T(s) = C(sI — A)~!B, is invertible). A transmission zero of (3.5) is
any root of the polynomial '

A-AlI B
n()\)—det( c 0)
satisfying
rank(A— A B)=n, rank(A"C”)=

Using the terminology of transmission zeros, the existence of so-
lutions of the linear regulator equations for all P, ) can be expressed
in the following terms (see Proposition 1.6).
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Proposition 3.1 Suppose (A,B) is stabilizable and (C,A) is de-
tectable. Suppose all eigenvalues of S have nonnegative real part.
The regulator equations (3.4) have a solution for all P,Q if and only
if no eigenvalue of S is a transmission zero of (3.5).

The condition thus derived is concerned with the existence of so-
lutions of the regulator equation for all P, Q. If solutions for some
specific pair P, are sought, then weaker conditions are to be ex-
pected. In order to discuss this point, it is convenient to recall some
important geometric concepts related to the notion of transmission
zeros. Consider again system (3.5), and let V* denote the largest
controlled invariant subspace contained in ker(C), i.e. the largest
subspace V* satisfying V* C ker(C) and such that, for some matrix
F,

(A+ BF)V* CcV*.

Note that since V* is invariant under (A + BF), then the restriction
(A+ BF)|ly-: V"> V*

is a well-defined linear mapping.
The relation between matrix (3.6) and the objects thus introduced
is described in the following statement.

Proposition 3.2 The determinant of the matriz (3 6) is not identi-
cally zero if and only if ker(B) = {0} and V* Nim(B) = {0}. If this
is the case, then the linear mapping (A + BF)|v- is independent of
F and the tnvariant polynomials of (A + BF)|y- — Al coincide with
the invariant polynomials of (3.6).

Proof. The complete proof of this result can be found in the
literature. To the purpose of the present discussion, i.e. to show the
relation between solvability of regulator equations and the objects
thus introduced, observe that, if V* Nim(B) = {0}, it is possible
to choose coordinates in such a way that, having partitioned z as
z = col(z;,z2), the subspace V* is described as

V* = {(z1,z2) € R" : z; = 0}

and
Im(B) C {(z1,z2) € R" : 22 =0} .
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Since V* C ker(C), in these coordinates the matrices A, B, C

can be split as
An A ) ( By )
C 0).
(A21 Ago 0 (G 0)

This form is particularly interesting because it can be shown that
the matrix Ags is actually a matrix representation of the mapping
(A+ BF)|y-.

In fact, since AV* C V* +Im(B), the matrices A2 and B, satisfy
the condition

Im(A;2) C Im(B,) .

Therefore there exists a (unique, because B, has rank m) matrix Fy
such that

BiFp=—Ay.
Setting
F=(0 F) (3.7)
it follows that A 0
A+ BF = ( 1 ) )
An A

We see from this that V* is invariant under (A + BF) and, in
particular, that Ago is a representation of the linear mapping (A +
BPF)|y-. It is also easy to deduce that the invariant polynomials of
the matrix (3.6) coincide with the invariant polynomials of A2 — Al
In fact, observing that the invariant polynomials of (3.6) coincide
with those of the matrix

<A+BF—/\I B)
C 0

for any choice of F, choose in the latter F as in (3.7) and take a
permutation of rows and columns, to obtain a matrix of the form

(An -A B ) (0)
C1 0 0 . (3.8)
(A1 0) Agp — Al
Using the maximality of V*, one can prove that the determinant

of the matrix
. (Au - A Bl)

o, . (3.9)
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is independent of X (so that its inverse is a polynomial matrix). Thus,
the invariant polynomials of (3.8), i.e. those of the matrix (3.6),
coincide with those of the matrix Ags — Al. «

We use now the construction outlined in the previous proof to
show that the solvability of the regulator equations (3.4) can be given
a characterization in geometric terms. Consider again system (3.5)
and suppose ker(B) = 0 and V* Nim(B) = {0}. Rewrite the con-
trolled plant (3.3) in a similar form, that is

Ze = AeTe+ Beue

e = Cu., (3.10)

where

2= () 4=(7 5) B=(3) c=( @,

and let V,* denote the largest controlled invariant subspace of (3.10)
contained in ker(Ce).
Simple interchanges of rows and columns show that the matrix

A- Al P B

(Aec‘,” %):( 0 S—M o) (3.11)
€ C Q 0

has a determinant which is not identically vanishing, so that ker(Be)

= {0}, Vo"Nim(B.) = {0} and the constructions indicated in the proof

of Proposition 3.2 can be repeated. In particular, choose again for

A, B and C the forms indicated in that proof, take a corresponding

‘partition of P as
- (H
P_(H)’

and observe that the invariant polynomials of (3.11), which coincide
with those of

0 S=M 0
C Q 0

for any F (thus, in particular, for any F' which renders V* invariant
under (A + BF)), coincide with those of the matrix

(An-,\f B,) (o P1)
o 0 0 Q
Ap O (Agz—/\I P, )

A+BF-X P B
( ) (3.12)

0 0 0 S-AM
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Since, as observed before, the matrix in the upper-left block has a
determinant which is independent of A, this shows that the invariant
polynomials of the matrix (3.11), which coincide with the invariant
polynomials of (A, + B.F.)|v: — Al (where F, is any matrix ren-
dering V; invariant under (A, + B.F.,)), are precisely the invariant
polynomials of the matrix

Agp — A P,
( ; s-,\1> . (3.13)
In particular, the matrix
A P
( = ) . (3.14)

is a matrix representation of the linear mapping (4. + BeFe)|v:.
We now show that certain properties of this matrix influence the
solvability of the regulator equations.

Proposition 3.3 Suppose ker(B) = 0 and V* Nim(B) = {0}. The
regulator equations (8.4) are solvable if and only if the matrices

Ay P Ayx 0
(7 %) e (7 5)
are similar.

Remark. Note that, in geometric terms, the condition indicated
in the this statement can be expressed in the following way: the
linear mapping (A. + B.F,)|v. has two complementary invariant
subspaces, the restrictions of (Ae + BeFe)|vs to these two subspaces
being isomorphic to (A + BF)|y- and, respectively, to the linear
mapping represented by the matrix S. «

Proof. Necessity. Let II,T" be solutions of (3.4). Consider again
matrix (3.12) and observe that

I -1 0 A+ BF - I P B I0 Il
(0 0 I ( 0 S— Al 0) (0 0 I )
0 I 0 C Q 0 0 I T-FII

<A+BF—AI B 0 )

C 0 0
0 0 S—-AI
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Since these transformations leave the invariant polynomials un-
changed, it is concluded that the invariant polynomials of (3.11), i.e.

those of
Agp — A1 P,
0 S—-\)"°

coincide with those of

C 0 0

(A+BF—/\I B 0 )
0 0 S—-AI

The latter, as in the proof of the previous Proposition, can be
shown to coincide with those of

Ag — A 0
0 S-AI)"

and this completes the proof of the necessity.

Sufficiency. Consider the partition of z. as z. = col(z;, 23, w).
The previous discussion has shown that the subspace V;* has dimen-
sion

ne = dim(z2) + dim(w)

and also that any vector of the form col(0, z2,0) is in V;*. Moreover,
it is possible to show that no vector of the form col(z;,0,0) can be in
V., because otherwise the vector col(z;,0) would be in V* and this
is a contradiction. Thus, V* is spanned by the columns of a matrix

of the form
0 IL
( I 0 ) .
0 I

Since, for some F, (Ae + BeFe)V, C V', and (3.14) is a matrix
representation of the linear mapping (4. + B.F.)|v;, it is deduced
that there exist matrices Fy, Fy, L such that

An Az P, I 0

(A11+31F1 A+ B R P1+BlL) (0 Hl)
0 0 S 0 I

0 II '
(I 01) <A22 Pz)
0 S/
0 I
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This identity implies

Ap+BiF, = 0
A11H1 +BI(F1H1 +L)+P1 H1S (3.15)
A21H1 = 0 .

Moreover, since V;* C ker(Ce), II; also satisfies
0=CI1,+Q. (316)

If the two matrices in the statement of the Proposition are similar,
there exist a matrix IIp satisfying

Axplly 4+ P, =11,5. (3.17)

Identities (3.15), (3.16) and (3.17) altogether show that

= (g;) T =Fll, + A + L

solve the regulator equations (3.4). <

3.2 The zero dynamics of a nonlinear system

We review in this section' the notion of zero dynamics of a nonlinear
system. For simplicity, we restrict ourselves to the particular case in
which the system in question is affine in the input, i.e. is modeled
by equations of the form

(3.18)

inwhichz e X CR", ue R,y € R™, f(0) =0 and h(0) = 0.

Let M be a smooth connected submanifold of z which contains
the point z = 0. The manifold M is said to be locally controlled
invariant if there exist a smooth mapping v : M — R™, and a
neighborhood U of the origin in R", such that the vector field flz) =
f(z) + g(z)u(z) is tangentto M forallz €e M NU.

An output zeroing submanifold is a connected submanifold M of
X which contains the origin and satisfies the following:

!This and the following sections are taken from [34].
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(i) M 1is locally controlled invariant;

(i) h(z) =0 for all z € M.

In other words, an output zeroing submanifold is a submanifold
M of the state space with the property that - for some choice of
feedback control u(z) - the trajectories of the closed-loop system

z = f(z) + g(z)ulz)

) = h(z) (3.19)

which start in M stay in M for some interval of time, and the corre-
sponding output is identically zero in the meanwhile.

If M and M’ are connected smooth submanifolds of X which
both contain the point z = 0, we say that M locally contains M’ (or
coincides with M’) if for some neighborhood U of the origin MNU D
MU (or MNU = M'NU). An output zeroing submanifold M
is locally mazimal if, for some neighborhood U of the origin, any
other output zeroing submanifold M’ satisfies M NU D M'NU.
The construction of a locally maximal output zeroing submanifold is
illustrated in the following statement.

Proposition 3.4 Part 1: Define a nested sequence of subsets My D
My D ... of X in the following way. Set Mg = {z € X : h(z) = 0}. At
each k > 0, suppose that, for some neighborhood Ug_y of 0, My N
Uk-1 is a smooth manifold, let M,_, denote the connected component
of Mx_1NUy_; which contains the origin (Mx_, is nonempty because
f(0) =0) and define My as

My={z€My_y: f(z)€span{gi(z),....gm(2)} + TeMi_1}.

T:hen, for some k* > 0 and some neighborhood Ug- of 0, My-4, =
M. . Suppose also that

dim(span{g;(z), .., gm(z)}) = constant
dim(span{g;(z), --.,9m(z)} N TxMj-) = constant

for all T € M. Then, the manifold Z* = M- is a locally mazimal
output zerotng submanifold.
Part 2: If, in addition,

dim(span{g:(z),...,gm(z)}) = m

20
span{g;(z),...,gm(z)} N Tx . *=0 (3.20)
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at £ = 0, then there exists a unique smooth mepping u* : 2* —- K™
such that the vector field

fH(z) = f(2) + g(z)u* (2)

is tangent to Z* .

Suppose the hypotheses listed in the previous Proposition are sat-
isfied. Since the vector field f*(z) is tangent to Z*, the restriction of
f*(z) to Z* is a well-defined vector field of Z*. In what follows, un-
less otherwise specified, by f*(z) we will always indicate-with some
abuse of notation—the restriction of f*(z) to Z*. The submanifold Z*
is called the (local) zero dynamics submanifold and the vector field
f*(z) is called the zero dynamics vector field. The pair (Z*,f*) is
called the zero dynamics of the system (3.18).

By construction, the dynamical system

T = f*(z), rez"

identifies the internal dynamical behavior induced on the system
when the output has been forced, by proper choice of initial state
and input, to remain zero for some interval of time.

Remark. In the case of a linear system, all the hypotheses of
Proposition 3.4, Part 1, which lead to the existence of the manifold
Z*, are always satisfied. The latter coincides with V*, the largest
controlled invariant subspace of ker(C), namely the largest subspace
of ker(C) satisfying

AV* C V* +im(B).

The hypotheses (3.20) of Proposition 3.4, Part 2, reduce to the fol-
lowing ones:

dim(im(B)) = m, V'Nim(B)=0 (3.21)

which, as mentioned in section 3.1, are exactly the conditions under
which the transfer function matrix of the system is invertible. The
state feedback u*(z) which renders f*(z) tangent to V* is a linear
function of z, namely u*(z) = Fz, and by construction the sub-
space V* is tnvariant under the linear mapping (A + BF). In case
assumptions (3.21) hold, the restriction Fy- is unique. <
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3.3 Existence of solutions of the nonlinear reg-
ulator equations

To the purpose of determining the solution of the nonlinear regulator
equations (3.1), the concepts summarized in the previous section can
be used in the following way. Suppose the controlled plant in (3.2) is
affine in both the control and in the disturbance input, and observe
that system (3.2), which will be henceforth denoted as system Ze,
can be put in the form

Te = fe(ze) + ge(ze)u

= he(ao), (3:22)
where
_( _ (fz)+p(z)w _ (9(2)
Ze—<w)a fe(ze) = ( s(w) )1 ge(Te) = ( 0 )1
he(ze) = h(z,w)

(3.23)

In the light of the above, equations (3.1) can be rewritten as
ams(w) = f(x(w) +glr(@)e) +plr@Nw (50

0 = h(r(w),w) .

Suppose that conditions (3.24) are satisfied, and consider, in the
state-space X, = X x W of Z, the submanifold

M, = {(z,w) € Xe: z=m(w)}. (3.25)

In view of the terminology introduced in the previous section, we
may easily observe that the manifold thus defined is an output zeroing
submanifold of the system . In fact, the first one of (3.24) exactly
says that M, is locally controlled invariant (invariance is achieved
under the feedback law u = c(w)), and the second one of (3.24) says
that M, is annihilated by the "output” map e = he(ze).

The system in question may have also another relevant output
zeroing submanifold. Let £ denote the system

¢ = f(z) + g(z)u

y = h(z,0), (3-26)
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(with f(z), g(z), and h(z,0) the same as in (3.23), that is in £,) and
suppose L satisfies the assumption of Proposition 3.4, so that a zero
dynamics (Z*, f*) can be defined in a neighborhood U C X of 0.
Let u*(z) denote the (unique) feedback law which renders f*(z) =
f(z) + g(z)u*(z) tangent to Z*, and comsider, in the state-space
Xe =X x W of £, the submanifold

M, = Z* x {0}. (3.27)

This submanifold is indeed an output zeroing submanifold of Z.. For,
this manifold is locally controlled invariant (invariance is achieved
under the feedback law u = u*(z) because w = 0 is an equilibrium
of w = s(w)) and is also annihilated by the output map (because
h(z,0) = 0 for each z € Z*).

In the next statement, we illustrate more precisely the relation
between the zero dynamics of e and those of . Of course, our
analysis requires the existence of both the zero dynamics in question,
S0 we assume

Z1: the system I satisfies the hypotheses of Proposition 3.4,
so that a zero dynamics (Z*, f*) can be defined in a neighborhood
UcC X of 0

Z2: the system X, satisfies the hypotheses of the (corresponding)
Proposition 3.4, so that a zero dynamics (Z;, fo) can be defined in a
neighborhood U C X, of 0.

Lemma 3.5 Suppose hypotheses Z1 and Z2 hold. Suppose that, in
a netghborhood of z, = 0, the set

M =Z:n(X x {0}) (3.28)

is a smooth submanifold. Then M locally coincides with the subman-
ifold M, defined by (3.27). Moreover, M is locally invariant under
fe, and the restriction of fo to M is locally diffeomorphic to the
vector field f* which characterizes the zero dynamics of T.

Proof. Since Z; is a locally maximal output zeroing submanifold
for ¢, Z; locally contains the submanifold M, which is an output
zeroing submanifold for £.. Since by construction M, C (X x {0}),
we deduce that M locally contains M,. Observe now that, at each
(z,0) € M, h(z,0) = 0. In fact, h(z,w) = 0 at each (z,w) €
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Zg. Moreover, if we let ul(z,w) denote the (unique) input which
constrains the flow of £, to evolve on Z;, we immediately see that
the input u = u;(z,0) constrains the flow of (3.26) to evolve on M
(because w = 0 is an equilibrium of the exosystem). From this we
deduce that M is an output zeroing submanifold for . M must be
locally contained in M,, and therefore M locally coincides with M,.

The second part of the statement is proved in this way. At each
point (z,0) of M,, the input u*(z) renders the vector f(z)+g(zx)u*(z)
tangent to M,. I, satisfies the assumptions of Proposition 3.4 (in
particular (3.20)) and, at each ze € Zg there is a unique u; such that
fo = fe + geu: is tangent to Z7. Since M; C Z;, we deduce that
u*(z) = ug(z,0) for each £ € M,;. The immersion

oc: Z*- X,
z = (z,0)

is a diffeomorphism of Z* onto M,, and
0. f™(z) = (fe + geue) 0 0(z) = (f¢) 0 o(z).

Thus, the restriction of f; to M, is locally diffeomorphic to the vector
field f*. «

The next lemma illustrates, in terms of properties of the zero dy-
namics of I, necessary conditions for the solvability of the regulator
equations (3.24).

Lemma 3.6 Suppose hypotheses Z1 and Z2 hold. Suppose there exist
smooth mappings z = w(w), with #(0) = 0, and u = c(w), with
c(0) = 0, both defined in a neighborhood W° C W of 0, satisfying
conditions (8.24). Then:

i) in a neighborhood of ze = 0, the set M defined by (8.28) is ¢
smooth submanifold,

it) Z; locally contains the submanifold M, defined by (8.25), and

ToZg =ToM, & TyM ,

i11) M, is locally invariant under f;, and the restriction of fJ to
Z, is locally diffeomorphic to the vector field s(w) which characterizes
the ezosystem.

Proof. Since Z is a locally maximal output zeroing submanifold
for L, Z; locally contains M, and M,, which are output zeroing
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submanifolds for . At (z,w) = (0,0), ToM,®Tp(X x {0}) = ToXe.
Thus, since ToM, C TpZ;, we have ToZ; + To(X x {0}) = ToXe.
By continuity, T(zyZs and T(z ) (X x {0}) span T;,,)Xe for all
(z,w) € Z; N (X x {0}) in a neighborhood of (0,0) and this implies
i).

By definition of M,

dim(Z?) < s + dim(M)
and therefore, since s = dim(M;), we obtain
dim(Z?) < dim(M,) + dim(M).

Also the reverse inequality holds because ToM, N ToM = {0}, and
this proves ii).

By the first one of (3.24), at each point (7(w), w) of M, the input
u = ¢(w) renders the vector

fe(m(w), w) + ge(m(w), w)c(w)

tangent to M,. Thus, again appealing to the uniqueness of u}, we
deduce that c(w) necessarily coincides with ug (7 (w),w). The immer-
sion ‘

u: WX,

w — (m(w),w)

induces a local diffeomorphism of a neighborhood of the origin in W°
onto a neighborhood of the origin in M,. Again by (3.24) (with ¢(w)
replaced by ug (m(w), w)) we have

pes(w) = (fe + gette) © p(w) = (f¢) o p(w).

Thus, the restriction of f; to M, is locally diffeomorphic to the vector
field s(w), i.e., iii) holds. «

We are now in a position to prove a nonlinear analog of Proposi-
tion 3.3.

Theorem 3.7 Suppose hypotheses Z1, Z2 hold. Let (Z7, f2) denote
the zero dynamics of L. Then there exist smooth mappings r =
m(w), with m(0) = 0, and u = c(w), with ¢(0) = 0, both defined in a
netighborhood W° C W of 0, satisfying equations (8.24), if and only
if the zero dynamics of L. have the following properties:
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t) in a neighborhood of e = 0, the set M defined by (5.28) is a
smooth submanifold,

t1) there ezists a submanifold Z, of Z;, of dimension s, which
contains the origin, such that

ToZ: = ToZ, ® ToM

itt) Z; is locally invariant under f., and the restriction of f7 to
Zs 1s locally diffeomorphic to the vector field s(w) which characterizes
the ezosystem.

Proof. The necessity immediately follows from Lemma 3.6. In
order to prove the sufficiency, we first show that Z; can be locally
expressed in the form of the graph of a smooth mapping z = y(w)
defined in a neighborhood W° C W of 0. Note that, by definition,
ToZ; NTo(X x {0}) = ToM, and therefore ii) implies

ToZ, N To(X x {0}) = {0}. (3.29)

By assumption, Z; is an s-dimensional submanifold; thus, there is a
smooth mapping :
¢: Xe—R°

(where X, is a neighborhood of 0 in X.), such that
Zy={(z,w) € Xe: d(z,w)=0}.

Condition (3.29) implies that the matrix (0¢/0z) is invertible at 0
and, by the implicit function theorem, there exists a smooth mapping
z = v{w) whose graph coincides with Z, in a neighborhood of 0.

We now prove that iii) implies the fulfillment of conditions (3.24).
As in the proof of Lemma 3.6, consider the immersion

ﬂ: Wo'—>Xe

w = (7(w), w) (3:30)

which induces a local diffeomorphism of the neighborhood of the
origin in W* onto a neighborhood of the origin in Z,. By iii), f¢ is
tangent to Z,, and there is a diffeomorphism ¢: W° — W°, such
that

(o P)us(w) = (£¢) o uoP(w) = (fe + getre) © 4 © P(w).
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This clearly shows that the mappings

m(w) = y(w)
c(w) = ug(7(w), w)
satisfy the first one of (3.24). The fulfillment of the second one of

(3.24) is a straightforward consequence of the fact that Z, is a sub-
manifold of Z; and the latter is annihilated by he(ze). <

(3.31)

Remark. Note that condition i), by Lemma 3.5, implies that M
is locally invariant under f;, and the restriction of f; to M is locally
diffeomorphic to the vector field f*(z) which characterizes the zero
dynamics of £. Thus, (3.24) are solvable if and only if the zero
dynamics of X, possess two complementary invariant submanifolds,
the flows of f; on these two submanifolds being diffeomorphic to that

of the exosystem and, respectively, to that of the zero dynamics of
. q

The previous Theorem clearly shows that the solvability of the
regulator equations is a property of the zero dynamics of Z.. In
particular, we stress the fact that the proof of this Theorem demon-
strates the existence of a smooth mapping z = n(w), which solves
(3.24) together with the mapping

c(w) = ug(m(w), w)

where ug is the unique input which renders f; tangent to Z;. In
other words, if the zero dynamics of £ are known (and so is the
input ug), the only real problem to deal with-in order to be able to
solve a regulator equations—is the one of finding a submanifold Z, of
Z¢ with the following properties:

e Z, has dimension s;

e Z, is transverse to X x {0};

e Z, is locally invariant under the zero dynamics vector field fg;

e the restriction of f; to Z, is diffeomorphic to the vector field
s(w) which characterizes the exosystem.

We hereinafter present a useful sufficient condition for the exis-
tence of such a submanifold.

Corollary 3.8 Suppose hypotheses Z1, Z2 hold. Let (27, f2) denote
the zero dynamics of Ze. Then there ezist smooth mappings z =
n(w), with 7(0) = 0, and u = c(w), with ¢(0) = 0, both defined in a
neighborhood W° C W of 0, satisfying equations (3.24), if
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i) ToZ; + To(X x {0}) = ToXe,
1) the zero dynamics of T have a hyperbolic equilibrium at z = 0.

Proof. As already observed in the proof of Lemma 3.6, i) implies
that in a neighborhood of the origin, M is a smooth submanifold.
Thus, by Lemma 3.5, M locally coincides with M, = Z* x {0}. Asa
consequence, the vector field

Je (2, w) = col(f(z) + p(z)w + 9(z)ue (z, ), s(w))

at each point (z,0) of M coincides with the vector field col(f*(z), 0),
where f*(z) is the zero dynamics vector field of I. Set

A= f)}w)’ PRI AU w)](om

A x
4=(5 5)

The restriction A* of A to its invariant subspace TpZ* characterizes
the linear approximation of the zero dynamics of £, and the restric-
tion Ag of A to its invariant subspace TpZ; characterizes the linear
approximation of the zero dynamics of Ze. Note that Tp(Z* x {0}) is
a subspace of Ty Z;, with codimension s. Thus, the spectrum of A; is
the disjoint union of the spectra of A* and of S. By assumption ii),
A® has no eigenvalue on the imaginary axis, while the eigenvalues of
S are on the imaginary axis. From the center manifold theorem, we
deduce that there is a C* (k > 2) center manifold Z, for Z;, which
indeed satisfies conditions ii) and iii) of Theorem 3.7. This manifold
can be expressed as a graph of a mapping z = w(w), which satisfies
(3.24) for c(w) = ug (m(w),w). <«

and note that






Chapter 4

Robust Output
Regulation

4.1 Structurally stable local regulation

The purpose of this Chapter is to study problems of output regula-
tion in the presence of parameter uncertainties. In order to facilitate
the exposition of the material, we proceed by addressing problems
of increasing complexity, beginning with the solution of a problem of
local output regulation in the presence of small parameter variations,
then continuing with the solution of a problem of local output regu-
lation in the presence of parameter variations ranging on prescribed
sets, and then ending with design of a controller solving the prob-
lem of output regulation for any initial condition over an arbitrarily
large (but fixed) compact set, robustly with respect to unknown pa-
rameters also ranging over an arbitrarily large (but fixed) compact
set.

For convenience, we continue to consider nonlinear plants mod-
eled by equations of the form (1.1), in which we explicitly introduce
a vector u € RP of unknown parameters, that is

z = f(z,u,w,

e = h(z,w, p).

Without loss of generality, we suppose p = 0 is the nominal value of
the uncertain and, for consistency with the analysis developed earlier
in this book, we assume f(z,u, w, 1) and h(z, w, u) to be C* functions
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of their arguments. Moreover, we also assume f(0,0,0,u) = 0 and
h(0,0, 1) = 0 for each value of u.
The problem addressed in this section can be described as follows.
Structurally stable local output regulation. Given a nonlinear sys-
tem of the form (4.1) with exosystem

w = s(w), (4.2)
find a controller of the form

£=n(¢,e)
u = 0(§)

such that, for some neighborhood P of 4 = 0 in R’ and for each
u e P

(4.3)

(a) the equilibrium (z,&) = (0,0) of the unforced closed loop system
& = f(z,6(£),0,p)
= 77({1 h(.’l:,o,p,))

is locally asymptotically stable in the first approximation,

(b) the forced closed loop system

z = f(z,60(£),w,p)
£ = (¢, hiz, w, p))
w = s(w)

is such that
lim e(t) =0
t—00

for each initial condition (z(0),£(0),w(0)) in a neighborhood of the
equilibrium (0, 0, 0).

The solution of the problem of structurally stable output regu-
lation happens to be a straightforward consequence of the theory of
local output regulation developed in section 2.3. As a matter of fact,
in order to address such a problem it suffices to lock at w and u
as if they were components of an “augmented” exogenous input w?,
which in this case (since the parameter u ius assumed to be constant)
would be generated by the “augmented” exosystem

Wt = s*(wt) = (8(51))) _
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With this notation, the “family” of plants (4.1) can be viewed as
a single plant modeled by equations of the form (1.1), namely

z= fa(za U, wa)
e = h*(z,w?).

It is easy to realize that a controller which solves a standard
problem of local output regulation for the “augmented” plant thus
defined also solves the problem of structurally stable local regulation
for the family of (4.1). In fact, suppose a controller of the form (4.3)
is such that:

(a’) the equilibrium (z,£) = (0,0) of the unforced closed loop system

z = f*(z,0(£),0)
£ = n(¢, h3(z,0)

is locally asymptotically stable in the first approximation,
(b*) the forced closed loop system

& = fHz,0(¢),w*)
& = n(& h?*(z, w®))
w = s(w)

is such that
lim e(t) =0
t— 00

for each initial condition (z(0),£(0),w?(0)) in a neighborhood of
(0,0.0).

Then, for some neighborhood P of 4 = 0 in RP, both require-
ments (a) and (b) of the previous definition hold (the former because
stability in the first approximation is conserved under small param-
eter variations and the latter because in (b’) the asymptotic decay
of the error is assumed to hold - in particular ~ for all z(0) in some
neighborhood of mu = 0).

In this setup, it is easy to adapt the general necessary and suf-
ficient conditions presented in Chapter 2, to yield a set of necessary
and sufficient conditions for the solution of the problem of struc-
turally stable local output regulation. Set

A= [gﬂ(o,o,om’ Bl = [g—'f‘-](o,o,o,u)’ o= [%](0,0#) '
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and observe that, because of the special form of the vector field
s?(w?),
or®* .

S’ (W°)
Then, the following result holds.

_ or*(w, u)
ow

s(w) .

Theorem 4.1 Consider the plant (4.1) with ezosystem (4{.2). Sup-
pose the ezosystem is neutrally stable. The problem of structurally
stable local output regulation is solvable if and only if there ezist
mappings z = 7*(w,u) and v = (w,p), with 7*(0,n) = 0 and
c2(0,u) = 0, both defined in a neighborhood W° x P C W x RP of the
origin, satisfying the conditions
a

T w) = frrwmewmwe g

h(m®(w, p), w, p)

for all (w,u) € W° x P and such that the autonomous system with
output

g

s(w)

e r
| I [T

0
A (w, p) ,

is immersed into a system

£ =€)
u=7(),

defined on a neighborhood =° of the origin in RY, in which ¢(0) =0
and v(0) = 0 and the two matrices

-l T [E

are such that the pair
(vew o) (%)

is stabilizable for some choice of the matriz N, and the pair

(c) 0), (Af)"’ B‘Q)F)

z:s detectable.
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Remark. Note that the first condition indicated in this Theorem,
namely the existence of a solution 72(w, 1), ¢®(w, 1) of the equations
(4.4) for each p in a neighborhood of 1 = 0 is a trivial necessary
condition for the existence of a solution of the problem of structurally
stable local output regulation. The condition in question, in fact, is
one of the necessary conditions (see Theorem 2.5) for the existence

of a solution of the standard problem of output regulation for any
fized value of p. <

Remark. The condition that system {W° x P, s*,¢?} is immersed
into a system {Z°,¢,~} is the existence of a mapping 7®(w, u) such
that

67.8.

25 W) = e(r*(w,p),  w,p) =77 (w, p)).
Choose K, L,M, N as suggested in the proof of Theorem 2.5. Then,
a simple calculation shows that

Mc = {(31501£1aw1ﬂ') r= ﬂa(waﬂ')aﬁo = 01{1 = Ta(waﬂ')}

is a center manifold for the system

.3.: = f(Z,M€0+’)‘(€1),w,[.l)
§0 = K€0 + Lh(szaﬂ')

&1 = (&) + Nh(z,w,p)

w = s(w)

g = 0.

at the equilibrium (z,&,&;,w,u) = (0,0,0,0,0). Since a center
manifold contains all other equilibria which are sufficiently close to
this particular one, it is deduced that any point (z,&q,&1,w,u) =
(0,0,0,0,4) is a point of M. In particular, 72(0,u) = 0. <

The relevance of the notion of immersion in the solution of a prob-
lem of output regulation is perhaps best motivated by the following
arguments. Observe that the linear approximation of

v = s(w)
p=0u=c*(w,pu),

at the equilibrium (w, ) = (0,0) cannot be detectable. In fact, since
c®(0, 1) = 0 by hypothesis,

o ., _
Eﬁc (01#)—01
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and the linear approximation in question is characterized by a pair

of matrices of the form
S 0
0, (30

which is indeed not detectable. Thus, it is not possible to have the
conditions of the Theorem directly satisfied by the trivial immersion
of this system into itself. However, the system in question may well
be immersed into another system of the form

€ = p(¢)
u="7(§),

having a detectable approximation at £ = 0. This happens, for in-
stance, in all cases in which the exosystem and the function ¢®(w, p)
are such that conditions for corresponding to those described in the
Corollaries of Theorem 2.5 hold.

We limit hereafter to describe one of these cases. Observe that,
because of the special form of the vector field s?(w?), the derivative
of any function A(w, u) along s®(w?) reduces to

OMw, u)

Load(w, p) = —5~==s(w) .

For convenience, the latter will be simply indicated as
LsMw, B) .

Corollary 4.2 Consider the plant (4.1), with ezosystem (4.2). Sup-
pose the ezosystem is neutrally stable. Suppose the pair (A(0), B(0))
is stabilizable and the pair (C(0), A(0)) is detectable. Suppose there
ezist mappings £ = 72(w, u) and v = ¢*(w, p), with 72(0,u) = 0 and
(0,u) = 0, both defined in a neighborhood W° x P C W x RP of
the origin, satisfytng the conditions (4.4). Suppose also there ezist
integers p1,...,Pm and functions

&; : RPi -+ R
(C1y--nG) P @ilCay---5G)

such that, for all 1 < i < m, the i-th component c2(w, u) of (w, p)
satisfies

LF ¢ (w, p) = ¢i(ct(w,p), Loci(w, p), ..., LB e (w, ), (45)
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for all (w,pu) € W° x P. Set

O
&) = [bf,] (0,...0)

and
di(N)=dig+danr+...+ d,-,,,,._lA”""l —~ PP,
Finally, suppose that the matriz

(A((g(a),\r 380))

s nonsingular for every A which is a root of any of the polynomials
d1(A),- .., dm()) having non-negative real part. Then there ezists a
controller which solves the problem of structurally stable local output
regulation.

4.2 Robust local regulation

In the previous section, we have established necessary and sufficient
conditions for the existence of a controller of the form (4.3) which
solves the problem of output regulation for any nonlinear system in
the parametrized family (4.1), when the parameter p ranges over
some neighborhood P of 1 = 0 in the parameter space RF. We
discuss now the problem of designing a controller which solves the
problem in question when p ranges over an a priori fired compact
set P* in the parameter space.

To this end observe that if some fixed controller solves, for any p
in a predssigned set P*, the problem of local output regulation, then
the necessary conditions of Theorem 4.1 must hold for every u € P*.
In particular, then, for every u € P the equations (4.4) must have
a solution z = 7®(w, ) and u = ¢®(w, u), defined in a neighborhood
W; of the origin in W, and the autonomous system with output

w = s(w)
p=
u= Ca(wv P) ’
is immersed into a system
£ =pl£)

u =),
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defined on a neighborhood Z° of the origin in R, with ¢(0) = 0 and
~(0) = 0, and the pair of matrices

Oy oy
- ol
aé £=0 aé £=0
is detectable.

Moreover, since the controller which solves the problem is re-
quired to stabilize for every value of p the linear approximation of
the plant at the equilibrium (z,w) = (0,0)

z = A(p)z + B(p)u

4.6

y=Clu)z, (4.6)
the latter must be robustly stabilizable on P*, i.e. there must exist

F,G, H such that
( A(p) B(pH )
GC(w) F

has all eigenvalues with negative real part for every p € P*.

(4.7)

Suppose now all these conditions hold and consider again the
controller described in section 2.3, in which we set

K=F L=H M=G

where F,G, H are matrices such that (4.7) has all eigenvalues with
negative real part for every p € P*. It is clear from all arguments
introduced so far that if the controller thus defined

fo=Fé&+ He
&1 = (&) + Ne
u=G&+v(&) -

is such that the associated closed loop system is stable in the first
approximation (at the equilibrium (z, &, &1, w) = (0,0,0,0)) for ev-
ery 4 € P*, then this controller solves the problem of robust local
output regulation.

Stability in the first approximation (at the equilibrium (z, £, €1, w)
= (0,0,0,0)) of the closed loop system thus defined depends on the
eigenvalues of the matrix

( A(p) B(p)H B(#)F) (( Alp) B(#)H) (B(u)>r)
GC(u) F 0 ={\GC) F 0
NCu) © ® N(C(p) 0) 4

(4.8)
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in which, the matrices F, G, H and I',  are fixed and, by hypothesis,

the submatrix
( A(p) B(p)H >
GC(u) F

has all eigenvalues with negative real part for every p € P*.

The only degree of freedom left in the design of the controller
is the matrix N, which must be chosen in such a way that all the
eigenvalues of (4.8) negative real part for every u € P*. The following
results describes a simple sufficient condition under which this is
possible, in the case of a single-input single-output system.

Lemma 4.3 Consider the parametrized family of single-input single-
output linear systems of the form (4.6) where u ranges over a fizec
compact subset P* of RP, with 0 € P*. Suppose the feedback law

o= Fé + Gy

u=Hé +v, (4.9)

is a robust stabilizer for (4.6). Let T,(s) denote the transfer function
of the closed loop system (4.6)-(4.9), i.e. of the system

(&) = (gt "% ) (&)= CP)

z
= (C 0
v = (cw 0
Suppose )
Tu(jw s
ffé?pJf 31€1§|Arg(To(jw))l <z (4.11)
.Let

d(A) = A+ g M+ 4y

be a polynomial whose roots are purely imaginary and simple ana

suppose
A(p) = A B(#))
e :
€ C(u) 0 )7
for every root A of d(\) and all u € P*. Set
0 1 0o - 0
0 0 1 .. 0
® = . . . ,
0 0 0 1
0 —a; -ao —Qq-1
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Then, there exists a vector
N = COI(bOablr s !bq—l)
such that the interconnection of (4.10) with

£ =86 + Ny

ST (4.12)

is stable for every p € P*.

Proof. Let N,(s) and D,(s) denote the numerator and, respec-
tively, denominator of 7,(s) and let 7 denote the degree of D,(s).
By hypothesis, all roots of D,(s) are in C~, for every u € P*. Also,

since . (A(W) - B
N,,(s):k,,det( o) . )

for some real number k,, none of the roots of N,(s) coincides with
any root of d(s), for every u € P*.
Let (s)
n(s
=k——=
K(s) )

denote the transfer function of system (4.12), in which

q-1
d(s) =s H(s - X)
i=1

(observe that, by hypothesis, A\; = jo; where «; is a nonzero real
number).

To prove the result, we need to show that there is a choice of k
and

g-1
n(s) = [I(s~ai),
i=1

such that the roots of the polynomial
P(s) = d(s)D,(s) — kn(s)N,(s)

are in C~ for each value of 1 € P*.

The proof of this reposes on a simple root locus argument. More
specifically, we show that, if the roots of n(s) and the sign of k are
appropriately chosen, the ¢ roots of P(s) which are on the imaginary
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axis at k = 0 move into C~ for small |k|. Since the other 7 roots of
P(s) remain close to those of D,(s), which are in C~ for all 4 € P*,
and P* is compact, this proves the claim.

Suppose none of the roots of n(s) is on the real axis. Then, the
root of P(s) which is at s = 0 for k = 0 moves into C~ if

sgn(k) # sgn(T,(0)) .

Thanks to the hypothesis (4.11), the sign of T},(0) is always the same
for all 4 € P*. Thus, we can choose the sign of k so that the root in
question moves in C~ for all u € P*.

The other roots of P(s) which are on the imaginary axis for k = 0
move into C~ or into C* depending on angle of departure of the root
locus at each one of these (simple) roots. Now, observe that the angle
of departure a;{u) of the root locus at ); is given by

aj(p) = Arg(k) + Arg(T,(\;)) — Z92) Arg(; — A) — Arg()

i)
+ 3020 Arg(\j —0;)  (mod 2n).

It is easy to realize that there exist o0;’s such that

Arg(k) + Arg(To(X;)) ~ Ef Arg(Xj — M) — Arg(}y) (4.13)
1%y .
+ f__':l] Arg(A\j—oi) == (mod 27),

for j =1,...,¢— 1. In fact, it suffices to set o; = \; — €e’%, observe
that this yields

g—-1

ZArg(/\j - 0,‘) = 0,- + 1/)]'(6,01, - ,0,,_1)

i=1
where t;(e,61,...,0,-1) is a quantity which is independent of 6,, ...,
641 at € = 0, and use the implicit function theorem to determine
that for small € the equations (4.13) have solutions 03, ...,04—1 none
of which is a real number.

With the o;'s chosen to satisfy (4.13), we obtain

— Tu(’\j)
a;(p) = 1r+Arg(To(,\j)) (mod 2).
Then, thanks to the hypothesis (4.11), for all u € P* the angle of
departure of the root locus at A; satisfies
™

3T
3 <aj(p) < —.

2
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Suppose, without loss of generality, sgn(T5(0)) > 0. The previous
arguments show that all roots of P(s) which are on the imaginary
axis for k = 0 move into C~ for k < 0, so long as |k| is small. Since
P* is compact, there is a number k* < 0 such that the roots of P(s)
are in C~ for all 4 € P*, when k = k*. Choosing by, ..., b1 so that

by +bis+ ...+ be—1897! = k*n(s)

completes the proof. «

4.3 The special case of systems in triangular
form

We describe in this section some special classes of single-input single-
output nonlinear system for which the various conditions for struc-
turally stable local regulation described in the previous sections can
easily be tested. Consider, for example, systems which can be mod-
eled by equations of the following form

1 = ag(p)z2 +pi(z1, W, p)
T3 = a3(p)zs + p2(z1, 22, w, 1)
) (4.14)
Ip-1 = an(#)In + pp-1(z1,Z2,. .. ,In—1,w,#)
in = Pn(51,$2,---,$mw’#) +b(#)u
e = c(p)zr —q(w,p),
in which, for each p € P*, the coefficients as(y), as(k), - .-, an(y),

b(), c(p) are nonzero, ¢(0, ) = 0 and p;(0,...,0,0,x) =0 for 1 <
1 € n. The system in question is a system of the form

i = F(p)z +G(p)u+ P(z,w,p)

e = H(u)z — glw, 1) (4.15)

with

0 a2(p) O 0 0

0 0 03(#) 0 0
F) = |- - - o=l

0 0 0 a,

0 0 0o - 0# b(u)
H(p) = (cp) 0 0 0),
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[y

and the vector P(z,w,u) exhibits a triangular dependence of the
individual components of z. In particular, its relative degree is equal
to n, for all u.

For this system it is immediate to find a solution of the regulator
equations (4.4), which is defined for all w and all 4 in P*. In fact,
observe that the second equation of (4.4), i.e.

h(n®(w, ), w,p) =0,

directly provides the expression of the first component 7% (w, ) of
m*(w, 1), which is
g(w, p)
i (w, p) = ———.
Hwn k) = =)

Because of the-special structure of system (4.14), the first equa-
tion of (4.4) uniquely determines all other components of 72(w, u).
In particular, its second component n3(w,u) is determined by the
identity

ont 2 a
5o, S(W) = e2(p)md(w, p) + pr (i (w, 1), w, )
which yields
1 ,ont
3 (w, u) = E(p_)(?ﬁs(w) = pr(r}(w, 1), w, 1)) -

This procedure can be iterated up to the last equation, which
eventually provides the unique expression for ¢(w, 1), which is
a
) = g (Gs(w) = prlrblwn )., 70,0, w,0))
(4.16)
Observe also that the matrices A(u), B(r),C(u) which charac-
terize the linear approximation of (4.15) at the equilibrium (z,w) =
(0,0) bave the following structure

OP(z,w, p)

Alp) = F)+[—% B(w)=Gw), Clw)=H(),

] (0,0,1)°
where
OP(z,w,u)
[ oz ]0,0,u
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is a lower triangular matrix. Thus, in view of the special structure of
F(u),G(u), H(p), for all 4 € P* the pair (A(u), B(u)) is controllable,
the pair (C'(u), A(u)) is stabilizable and the matrix

("ew™ )

is nonsingular for all A.
If the (unique) expression for ¢(w, u) provided by (4.16) is such
that, for some integer p and some function ¢(£1,£2,...,&;),

Lic*(w,p) = ¢(c*(w, u), Lsc*(w, p), ..., LI c*(w, ),  (4.17)

then, in view of the results presented in Chapter 2. the autonomous
system with output {R" x P*,s?,¢*} is immersed into a nonlinear
system {R?,,7)} in which

€2
€3
e(§) = , o =&
{q
d’({la{?a tt aéq)

If this is the case, all the conditions for the existence of a controller
solving the problem of structurally stable local output regulation
described in section 4.1 are fulfilled.

A special case in which a condition of the form (4.17) holds is
when the exosystem is a linear system and, for any u € P*, A{w, u)
is a polynomial in w whose degree does not exceed a fixed number
independent of u. For the special system (4.14), this turns out to be
the case whenever, for each u € P*, the pi(z1,z2,...,Zi,w,p)’s are
polynomials in z,, z9, ..., z;, w, and g(w, ) is a polynomial in w,
of degree not exceeding a fixed number independent of u.

In fact, the recursive solution of the equations (4.4) presented
above yields, at each step, a component of 72(w, 1) which is a poly-
nomial in w, and whose degree does not exceed a fixed number inde-
pendent of 1. Thus, eventually, also the unique expression found for
c*(w, u) is a polynomial in w, whose degree does not exceed a fixed
number. This being the case, on the basis of the results presented in
Chapter 2, it is immediate to conclude that the autonomous system
with output {R" x P* s*,c2} is immersed into a linear observable
system.
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These considerations can be extended to the more general class
of systems modeled by equations of the form

z = Z(p)z + polz1,w, p)
) = ax(p)z2 + pi(z, 71, w, 1)
z2 = o3(u)z3 + p2(2, 21, T2, w, )
(4.18)
Tp-1 = Gn(B)Tn +Pn-1(2,21,22,...,Tn_1, W, 1)
Zn = pn(2,21,Z2,...,Zn, W, 4) + b(u)u

e = c(p)z1 ~q(w,p)

in which z € R™, provided that, for each u € P*, po(z;,w, u),
p(2,71,w,p), ... pu(2,21,Z2,...,Zn, w, ) and g(w,u) are polyno-
mials in z,zy, z2, ..., Z;, w, of degree not exceeding a fixed num-
ber independent of u, and the eigenvalues of the matrix Z(u) have
nonzero real part.

Also this case, in fact, if the exosystem is a neutrally stable linear
system, the regulator equations (4.4) have a unique globally defined
solution, in which ¢®(w, u) is a polynomial in w, whose degree does
not exceed a fixed number. To see why this is the case, split 7*(w, u)

as
C(w, p)
mHw, p)
mh(w, 1)

in which ¢(w, 1) and the 72(w, u)’s correspond to the partition of the

state vector of (4.18) into 2 and the z;’s respectively.

As in the previous case, in fact, observe that the second equation
of (4.4) directly provides the expression of 7§(w, 1), namely

r () = T2)

c(u)

Then, observe that the equation for {(w, i) is an equation of the form

é]

oo 5w = Z(u)(w,p) +palri,phw) (419
where po(7$(w, u), w, 1) is a polynomial in w, whose degree does not
exceed a fixed number (independent of u). Let p denote this number.

For each fixed u, the equation in question is precisely an equation
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of the form (1.20), discussed in section 1.2. Therefore, by Lemma
1.2, this equation has a unique solution {(w,y ) whose entries are
polynomials in w, whose degree does not exceed the number p.

Once the expression of {(w,u) has been determined, the same
recursive method of solution described in the previous case can be
used, to yield all remaining components 75(w, 1), ... , 73(w, u) and
c*(w, ). Moreover, since {(w,u) is a polynomial in w, it is easily
seen that all the 73 (w, u)’s as well as ¢®(w, p) are polynomials in w,
whose degree does not exceed a fixed number independent of u. As
a consequence, the unique solution (73 (w, 1), ¢*(w, 1)) of the regula-
tor equations (4.4) is such that a condition of the form (4.17) holds
(actually, for some linear function ¢(¢1,&o,...,&p))-

4.4 A globally defined error-zeroing invariant
manifold

Motivated by the analysis presented in the previous section, we con-
sider henceforth output regulation problems for systems modeled by
equations of the form

Z(/J,)Z +P0(-’51,waﬂ)
= F(u)z+Gp)u+ P(z,z,w,p) (4.20)
e = H(,U)Z - Q(wa ,U)

z

where
0 ag(p) O 0 0
0 0 a3p) 0 0
F) = |- - | 6=
0 0 0 an() 0
0 0 0 - 0 b()
H() = (cw) 0 0 --- 0)
and
m(z,21,w,p)
p2(2, z1, T2, w, 1)
P(z,z,w,u) =
Pn-1(2,21, 22, . . , Tn1, W, 1)
on(z,21,22,.. ., Zn, w, )
In what follows its is assumed that, for each ¢ € P, gq(w,u),
po(-T],‘w, #) p1(2,21,w, /J')a ceey pn(za Z1,%2,... 1zn7w1ﬂ) are pOIynO'

mials in z, 21, Z2, ..., Tn, w of degree not exceeding a fixed number
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k, independent of u. Moreover, it is assumed that, for all 4 € P,
the eigenvalues of Z(u) have negative real part. Finally, it is also as-
sumed (without loss of generality if the compact set P is connected)
that aa(u) > 0, a3(u) > 0, ..., an(u) >0, b(u) > 0 and c(u) > 0 for
al peP.

Under these hypotheses, the equations (4.4) have a unique and
globally defined solution 72(w, ), ¢*(w, u) in which ¢®*(w, u) satisfies
an identity of the form.

Lic®(w,p) = apc®(w, ) — a1 Lyc*(w,p) — ... — ag_1 LI P (w, p) .

This, in turn, uniquely determines the existence of a ¢ x ¢ matrix @,
a 1 x g row vector I, and a globally defined mapping 7(w, u) such
that

Bre(w,p) o _
—w—Sw = &73(w,u) (4.21)
Aw,p) = I'r¥(w,p).
As a matter of fact, this occurs for
c(w, u)
Lyc*(w, )
™(w,u) = :
LI 2cA(w, p)
L3~ e*(w, p)
0 1 0 0
0 0 1 0
d = .
0 0 0 1
\—ao —ay —Q2 -+ G-}
r = (100 --- 0).

Consider now a feedback law of the form

g0 = Ké&+Le
é & + Ne (4.22)
v = a(bo)+TE .

in which a(&p) is a (possibly nonlinear) function, smooth in a neigh-
borhood of £y = 0 and such that a(0) = 0.
Then, it is possible to prove that the following property holds.
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Proposition 4.4 Suppose (4.22) asymptotically stabilizes the lin-
ear approzimation of (4.20) at the equilibrium point (£o,&y,2,2) =
(0,0,0,0), (w,u) = (0,0). Suppose o(K) € C~. Then, there exists a
g x g matriz II satisfying

o1l
iy

1o
r,

nof

(4.23)

where ® and T are defined as in (4.21). As a consequence, the com-
posite system

o = K&+ L(H(p)z—g(w,p))

& = o6+ NH(p)z ~ q(w, )

z = Z(M)Z +po(:z:1,w,p) (424)
& = g(#):c + G(u)(aléo) + T&1) + P(z,z,w, 1)

w = w

has a globally defined center manifold

MC = {(503{17251‘11”) :
=06 = Hra(w, P‘)vz = C(wa /1),2: = Wa(wa /‘)}

at (éo,ﬁl,z,x,w) = (0,0,0,0,0).

Proof. Note that the linear approximation of (4.24) at (&, &1, 2, 7,
w) = (0,0,0,0,0,0), is a system of the form

é:o = K&+ LH(p)z+ LQ(u)w
& = @6+ NH(uz + NQ(p)w
2 = Z(wz+ To(wH(u)z + Tw(p)w
£ = F(u)z+ Gu)(Mé+T&)+ Pou)z + Pr(u)z + Py(p)w
w = Sw.
| (4.25)
By hypothesis, the matrix
K 0 0 LH(0)
0 o 0 NH(0) (4.26)

0 0  Z(0) TL(0)H(0)
G(O)M GOT P,(0) F(0)+ Ps(0)

has all eigenvalues with negative real part. Since the matrix ® has
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all eigenvalues on the imaginary axis, the Sylvester equation

K 0 0 LH(0) Xo Xo
0 ® 0 NH(0) X1 _ | X P
0 0 Z0) Tz(0)H(0) X, X
com eor £ FO+20) \X) \X
_lY
10
0

has a unique solution for any choice of Y. Thus, in particular, for
any Y there exist X; and X; such that

X, + NH0)X; - X;2=Y .

From this, using the results illustrated in section 5.1, it is imme-
diate to conclude that an identity of the form

X, + NH(O)X; - X;2=0
necessarily implies
¢X1—X1<I’=0 and H.Xz=0.

Using again the hypotheses that the matrix (4.26) has all eigen-
values with negative real part and the matrix & has all eigenvalues
on the imaginary axis, note that the Sylvester equation

K ' 0 0 LH(0) Xo Xo
0 & 0 NH(0) m|_ (o,
0 0 2(0) T(0)H(0) X, X,
G(0)M OG(O)T P,(0) F(0) + Pz(0) Xz Xz
N 0
= 0
G(0)T

has a unique solution for any choice of I" (thus, in particular, for the
T defined in (4.21)). This equation can be split as follows

KXo+ LH(0)Xz ~ Xo® =0 (4.27)
3T+ NH(0)X, ~T1® =0 (4.28)
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Z(0)X, + To(0)H(0) X, — X, = (4.29)
G(O)M Xo + G(O)TTI + P,(0)X, + (F(0) + P;(0)) Xz — X,® = G(0)T
(4.30)

In view of the preirious discussion, the second of these identities
implies
H(0)X;=0 (4.31)
and, of course
Sl =11d,

which is one of the two identities it is required to prove. Replacing
(4.31) into (4.27) yields

KXo—Xo®=0

which in turn, since K has eigenvalues with negative real part by
hypothesis, yields
Xo=0. (4.32)

Using (4.31) in (4.29) yields
Z(0)X, - X,® =0

which again implies

X, =0 (4.33)
since Z(0) has no eigenvalue with zero real part. Finally, replacing
(4.32) and (4.33) into (4.30) yields

G(O)TTI + (F(0) + P (0)) X — Xz = G(O)T. (4.34)

Using the identity (4.31), which expresses the fact that the first
row of X, is zero, and keeping in mind the special structures of
F(0),G(0) and P,(0) (which is lower triangular), the relation (4.34)
yields

X:=0
ie.
G0)TIl = G(O)I .
which concludes the proof of (4.23).

The fact that the manifold M, is invariant can be checked by
direct substitution. <

Noting that the error e is zero on M,, the issue is now to choose
K, L, N, T, a(éo) in (4.22) so that M, is semiglobally attractive.
This issue will be addressed in the next section.
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4.5 Semiglobal robust regulation

Consider again system (4.20), driven by the controller (4.22) and
subject to a disturbance w generated by the exosystem

w=Sw,

i.e. system (4.24). Suppose the hypotheses of Proposition 4.4 hold
and consider the following (globally defined) change of coordinates
in the state space of (4.24)

Br N~

In these new coordinates
tions of the form

o -

g 1 Nl-»{-h
Il

Kfo + Le(p)Z
@& + Ne(p)i
Z(#)z + ﬁO(ily

F(p)z + G(u)(
Sw,

61 - nTa(wa #)

z—~((w,p) (4.35)
z —7*(w,u) .

, system (4.24) is represented by equa-

w,p) (4.36)
a(éo) + T&1) + P(2,z,w, )

and the manifold M. is the subset where

§0=0,

£1=0a 2=0,

B
I
o

Thus, since this manifold is invariant,

ﬁO(Ov w, l‘) =0

P(o,

0,w,p) = 0

for every (w,u) € R" x P. Moreover, it is easy to check that
P(z,Z,w, ) has the following structure

Pr-1(
Pl

D1 (275:17 w, #)
P2(2, 1-"1,5:21 w, #)
(4.37)
Evilvin s ,in—l,w,l‘)
Evilvin oo vinvw’#)

By construction the tracking error

e=2I
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is zero on M. and if M, is attractive, i.e.

lim &(t) =0, lim &(t)=0, lim Z(t) =0, lm &(t) =

t—o0 t—o0 ~ =00

then clearly also
hm e(t)=0.

Observe now that, if we let w° denote the va.lue at time £t = 0
of the state of the exosystem, system (4.36) can be rewritten in the
form of a time-varying system as

fo = K&+ Le(p)i

£ = &+ Ne(pi
Z = Z(p)z+po(Zy,ezp(Sthw’,u)
Z = F(uz+Gu)(albo)+TE) + P(z,2,exp(St)w°, p) .

(4.38)

The problem to be addressed is to find matrices K, L, N,T and

a function «(&p) such that the equilibrium (¢, &, 2, ) = (0,0,0,0)

of this system is asymptotically stable, with a basin of attraction

containing a fixed compact set of initial states, robustly in w® and u.

Suppose the matrix N has been fixed (as we will see in a moment,

it suffices to choose for N any matrix such that the pair (®,N) is

controllable). Then the problem in question can be viewed as the
problem of determining a dynamic feedback law of the form

fo = K&+ Le

u = albo)+Té . (4.89)

which robustly asymptotically stabilizes (with a basin of attraction
containing a fixed compact set of initial states) an uncertain time-
varying nonlinear system modeled by equations of the form

[

®& + Ne(p)i

( )Z+p0(C( )zlv_ezp(St)wO)#) (440)
= F(u)z + G(p)u+ P(2,Z,exp(St)w’, p)
= c(;t)zl.

o 8N~

System (4.40) is an uncertain system because the actual value of u
as well as that of the initial state w° of the exosystem are not known.
For consistency with the hypothesis on p, we assume that the initial
state w°® of the exosystem ranges over an a priori known compact set
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W € R". Inother words, system (4.40) can be regarded as a system in
which the terms po(c(p)Z1,ezp(St)w®, u) and P(z, %, exp(St)w®, 1)
are bounded (recall that the exosystem is assumed to be neutrally
stable) functions of t, vanishing at (2,Z) = (0,0) for all t € R and
for all values of (w®, ), unknown parameters ranging over a fixed
compact set W x P.

In order to explain how robust asymptotic stability can be ob-
tained by means of a feedback of the form (4.39), it is useful to
describe first how a system of the (4.40) can be robustly stabilized
(in a semiglobal sense) by means of a special kind of memoryless and
linear state-feedback.

To this end we begin by showing how system (4.40) can be given a
simpler structure by replacing the actual state variables ,,%Z,,..., %,
by the error variable e and its first n — 1 derivatives with respect to
time. Define

m = m(z,1,t) = c(p)i
and, recursively, for 2 <1 < n,
Oni~1: , i1z | Oniy
3% - er e
and observe that, because of the special structure of the (4.37), for
all 1 €4 < n, 9 can be given an expression of the form

™= 77:(27537t) =

= kx(#)it + ¢i(2aila se aii—laezp(St)woa /J')

in which k;(u) is nowhere zero on P. Thus, the mapping

1.:1 nl(saiat)
1':2 — m(za‘:zat) (4.41)
Zq Nn(Z, :'z':,t)

can be used to globally define a (partial) change of coordinates in the
state space of (4.40). Observe that, by construction,

m(t) e(t)
m(t) | _ | €M)
@)\t

Remark. Note that neither the coordinates Z,,...Z,, nor the
coordinates m,,...,nn, will ever be actually available for feedback,



98 Chapter 4. Robust Output Regulation

because they depend on the unknown parameters w° and p. However
this apparent inconvenience can be removed if, as it will be shown
later on, reasonable asymptotic estimates the first n — 1 derivatives
of the error e can be generated. <

Having changed the coordinates in this way, the control system
(4.40) reduces to a system of the form

&, = G+ Nnp

z = Z(o)E +p(n1at’ 0)

m = m

= m

-1 = Tn

n = k(o)(u + Q(E, 0, 6)) 3

in which p(m,t,6) and ¢(%,1n,t,6) are bounded functions of ¢, van-
ishing at (Z,7) = (0,0) for all t and 6, and in which § = (w°,u) is a
(r + p)-tuple of unknown parameters, ranging over a fixed compact
set ©. Of course, Z(0) = Z(u) in this notation and k(6) in nowhere
zero. This system can be put in more compact form as

& = % +NHn
i = Z(0)z+p(Hn,t,6) (4.42)
7.) = F’?+ Gk(o)(u"" Q(f,fl,t, 9)) 3
where
010 0 0
0 0 1 0 0
F= - . . y G= .
000 - 1 0 (4.43)
0 00 ---0 1
H=(1 0 ... 0).

Note also that, setting

. B é,) _(cp NH)
Z, 22—(71 3 A= 0 F 3 B

the system under consideration can be further simplified to

I,

(e)

I
2

Z(0)z; + p(HEz,,t,6)
Az? + Bk(o)(u + Q(zl, EI?) ta 0)) )

(4.44)
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where
E=(0 I,).

Note that, if NV is such that (®, N) is a controllable pair, also the
pair (A, B) is controllable. Moreover, since all the entries on the last
row of F are zero and the only nonzero entry in G is the last one
(equal to 1), the vector z2 and the matrices A and B can also be
re-partitioned as

_{za _(An An _ (0
"’"(zn)’ A’( 0 0 ) B‘(l) ’
where dim(z9;) = ¢ + n — 1 and dim(z2) = 1. It is easy to check

that, by construction, (41, A12) is a controllable pair.

The design procedure which will be illustrated relies upon the
following hypothesis on (4.44).

Assumption A. There exists a positive definite proper smooth func-
tion Vj(z,) satisfying

oV

7o (2(0)21 + p(v,1,6)) < —a(Vi(z1)) + clv|? (4.45)
Zy

for all z,,v,t and all # € O, where a(r) is a Ko function, which is
also assumed to be continuously differentiable, and ¢ > 0.
Moreover,

lg(z1, Ez2,t,0)12 < a(Vi(z1)) + 7(|22]?) (4.46)

for all z,,z2,t and all # € ©, where ¥(r) is a K, function, which is
also assumed to be continuously differentiable near r = 0.«

Using this hypothesis, the following result can be proven.

Lemma 4.5 Choose any matriz K, such that the eigenvalues of
A1+ A12K, have negative real part, and let P be the unique (positive
definite) solution of the Lyapunov egquation

(A1 + A12K1)TP + P(Ap + ApKy) = 1.
Consider the positive definite function

V2(.'z72) = $'21‘1P$21 -+ (:l:22 - K]$21)2 .
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Suppose estimate (§246) holds. Then, for any (arbitrarily small)
number b > 0 and any (arbitrarily large) number d > 0 there is @
matriz Ko such that

ov,

32, [Az2 + Bk(0)(Koz2 + g(z1, Ex3,1,6))] < —aVa(z2) + ba(Vi(z)))

(4.47)
for all zy, for all t, for all 0 € © and for all o such that |z4| < d,
where @ > 0 is a number depending only on Vo(z2) (and not on b and

d).
Proof. For convenience, set

Lzo = 2(z ~ Kiz21)
Kzo = —KijAnzo — K1A1z02 + 23, PAgy
g(z,t70) = Q(Il,E.’Eg,t,o) 3

and compute the derivative Va (z2) of Vo(z2) along the trajectories of
(4.44), to obtain

Va(z2)
= 223 P(Ay 1291 + AnZ22) + 2(T22 — K1220)k(0)[u + g(z, 1, 6))
—2(z22 — K1221)K1(Anz21 + A2 222)

—217;IP-A21 (.’1:22 - K].’I:gl) <+ 2:1:2T1PA2] (.’1722 - Kl.’l:gl)
' 1
= 2:1:ng P(Ay + Aa1Ky)zoy + Lzok(0)[u + g(z,t,6) + He—)Kzz]
1
= —|z91|? + Lxzok(0)[u + g(z,1,0) + ’k‘(o_)K”’?] .
Using the inequality

1 o Ky
< — =b
ab_2ua +2

obtain the estimates

Laog(a,1,60) < — (Lag)? + X 2(, 8,6)
24 2

! 1 2 p 2
< — .
Lzzk(o)K:l:g S (Lzo)* + 2%2(6) (Kz9)
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These yield
2 2 (Kz2)?
Vo(z2) < —lz21 |2+ £(8) [ngu+ (Lz2)?+ (g (z,t, o)+ )] .
k2(6)
Set now
U= —(l + ko) Lzy = Kozg (4.48)
u
where kg > 0 is any fixed number. This yields
_ - 2 (K )2
Va(as) < —fon” - kok(6) (Lz2)* + 5 (k(6)g”(@,1,0) + L= )

that is, bearing in mind the estimate assumed for g?(z,t,6),
Va(za) < —lzaa|? — kok(8)(Lz2)?

2
(v @) + § (kO + 2L

By construction, the quadratic form
Jz1)? + kok(6)(Lz2)?

is positive definite. Since 8 ranges over a compact set, there exists a
number A > 0, which only depends on K, such that

Mza|? < lza1|? + kok(6)(Lz2)?

for all 6 and zs.

Recall that ~(r) is continuously differentiable near the origin.
Thus, over any compact set K, v(|z2/%) can be estimated from above
by a function of the form p|z3|? where p > 0 depends of course on the
set K. Since 0 ranges over a compact set as well, it is then deduced
that, for any d > 0, there exists a number 4 > 0 such that

(Kz,)?
%(0)

k(O)v(lz2l*) + < balzaf?
for all |z9| < d.
Thus,

_#_5_4| 24 rk(6)

‘./2(1'2) < _AII2I2 + 2 T2 o

a(Vi(z1))
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for all z; and all |z2| < d. Given any b > 0, choose now u such that

phe X HOW
2 T2 2 -

for all 6, to obtain

A
Va(z2) < —§|932|2 + ba(Vi(z1)) -
Since Va(z2) < klz2|? for some & > 0, the result follows. <

Proposition 4.6 Consider the system

. = &6+ NHn
z = Z(6)z+p(Hn,t,6) (4.49)
1 = Fn+4Gk(0)(T&H + Mn+g(2,1,1,6)) .

Suppose assumption A holds. For any compact set S of initial condi-
tions (£,(0), 2(0),7(0)) there exist matrices T, M such that the equi-
librium (£,%,1m) = (0,0,0) is asymptotically stable, with o basin of
attraction which contains the set S.

Proof. Set
Ky,=(T M)

and let system (4.49) be rewritten in the form

j;l Z(O)Zl +p(HE22,t,o)

iy = (A+Bk(®)K)zs + B(O)q(zs, Eza,t,0). (450

Given the number ¢ > 0 in (4.45), let ¢/ > 0 be any number such
that ¢z < ¢'Va(z2). Then, from the previous Lemma we know
that, for any choice of b > 0 and d > 0 there is K, such that,

O (2(6)21 + p(HEz,1,6)] < —a(Vi(z1)) + ¢Valza)

[(A + Bk(6)K2)z2 + Bk(0)q(z1, Exzs,1,0))
S —GVQ(I2) + ba(V1 (21))

9z,
M (4.51)
3.’1:2

for all z,, for all z5 such that |z2| < d, for all ¢, for all 8 € ©.

Set b
X =aler),  xalr) = Zalr).
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The two inequalities in (4.51) show that, if Vo(z2) > x2(Vi(z;)) then
Vo(z2) is decreasing along the trajectories of the system, while if
Vi(z1) > x1(Va(z2)) then Vj(z,) is decreasing along the trajectories
of the system. The corresponding regions in the (Vj, V2) plane have
a nonempty intersection if the (small gain) condition

X7 (r) > xa(r)
is fulfilled for all » > 0. This occurs, for instance, if
a
b= v

Note now that, if b is chosen in this way, the function

o(r) = 2x2(r)

satisfies
X1 (r) > a(r) > xa(r)
for all r > 0. Then, define

W(z172:2) = ma‘x{V2(x2)aa(Vl(zl))} :

Note that this (continuous, positive definite and proper) function
only depends on the function V)(z,) introduced in the Assumption
A and on the matrix K chosen, once for all, in the way indicated at
the beginning of the previous Lemma. In particular, W(z;,z;) does
not depend on the gain matrix K.

" To prove stability, set

QC = {(21,2}2) : W(z17x2) < C}
By = {(z3,22) : lza|* + |zaf® < 4%} .

Let S be any compact set of initial conditions in the (z;,z2) space
and choose ¢ and d such that

SCN:CBy;.

According to the value of d thus determined and to the value of
b determined above, choose the matrix K> so as to render (4.51)
fulfilled for all (z,,z2) € Q. Then, using the property that V5(z5)
is decreasing whenever Vo(z2) > x2(Vi(z1)) and Vi(z,) is decreasing
whenever V)(z;) > x1(Va(z2)), it is easy to see that, for any ¢ < ¢,
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the set ). is positively invariant, and that any trajectory originating
in § converges to the origin as ¢ tends to co.q

Remark. Note that the matrix K2 which renders (4.51) fulfilled
has the form (4.48), namely

Ky = —(-;1: +ko)L

(where L is a fixed matrix which depends on K, and kg is a fixed
number). As shown in the proof of Lemma 4.5, higher values of
the parameter d and lesser values of the parameter b in (4.47) re-
quire lesser values of u. Thus, asymptotic stability of (4.49) with
arbitrarily large basin of attraction is achieved via linear high-gain
state-feedback. «

The result described in this Proposition 4.6 will be used in a
moment, in the proof of the main robust stability result.

Return now to the original problem, that is the problem of robust
and semiglobal regulation of the plant (4.20), and consider a control
law of the form .

{0 = Kéy+ Le
& = & + Ne (4.52)
u 'd’(M{O) + T£1 3

in which dim(§p) = n and ¥(-) is a function satisfying (a) = a
if |a| is small. This is indeed a control law of the form (4.22) and
therefore the result of Proposition 4.4 apply. If the hypotheses of
this Proposition hold, then the corresponding closed-loop system has
a globally defined invariant manifold on which the tracking error is
zero. As shown at the beginning of this section, after the change
of coordinates (4.35), the problem can be viewed as the problem of
finding matrices K,L,N,T,M and a function ¥(a) such that the
equilibrium (&9, 1,2, ) = (0,0,0,0) of system (4.38), in which we
set a(&o) = Y(MEp), i.e. system

fo = Kéo+ Le(w)i

£, = ®& + Ne(u)iy

Z(p)z + polc(p) 21, exp(St)w®, p)

F(u)z + G(u)(v(M&) + Té) + P(Z,Z, ezp(St)w’, u)

_ (4.53)
is asymptotically stable, with a basin of attraction containing a fixed
compact set of initial states, robustly in w°® and u (note that the

B e
N
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change of coordinates (4.35), although depending on w°,u and t,
maps compact sets of initial conditions into compact sets of initial
conditions).

The additional change of coordinates (4.41), which still maps
compact sets of initial conditions into compact sets of initial con-
ditions, brings system (4.53) to a system of the following structure

£ = Kéo+ LHy

§ = o4+ NHy (4.54)
z = Z(0)z+p(Hn,t,6)
n = Fn+ Gk(6)(T& + v(Mé) +q(z,n,1,0)) .

in which K, L, N,T, M and 1(a) are to be determined in such a way
as to render the equilibrium (&g, &1, 2, ) = (0,0,0,0) asymptotically
stable, with a basin of attraction containing a fixed compact set of
initial states, robustly in 6. '

We have already proven a result showing that, if £, were equal to
n and ¥(a) = a, then matrices N,T, M could be found yielding such
a robust stability property. Thus, it remains to show how X and
L can be determined. To this end, we will use a method proposed
by Esfandiari and Khalil, which consists in the following: choose for
(-) a saturation function, namely

Y(a) = Uma.xsat(—('l_) (4.55)

max

where Upnax > 0 is a large number and choose for
€0 = K&+ Le

the structure of a high-speed observer, i.e. a system of the form

010 0 Rap )

. 0 0 1 0 Rza,,_;;

=1 - - | &+ : (e—H¢)  (4.56)
0 00 1 R""1q,
0 00 0 Rtag

in which R > 0 is a large number. As a matter of fact, it is possible
to prove that the following result holds.
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;

Proposition 4.7 Consider the system

SRy
o

S8 N

Kéo+ LHn

®é, + NHy

Z(0)z + p(Hn,t,6)

Fn + Gk(6)(T€1 + »(Mé&o) + ¢(2,n,1,6)) .

(4.57)

in which K,L have the structure specified in (4.56), ¥(a) has the
structure specified in (4.55), N is such that the pair (P,N) is con-
trollable, p(m,t,0) and q(z,m,t,6) are bounded functions of t, van-
ishing at (2,1) = (0,0) for all t and 6, k(0) > 0 for all 0, and 6 is a
(r+p)-tuple of unknown parameters, ranging over a fized compact set

©. Moreover, let ag,a1,...,an—1 in (4.56) be such that the matriz
—~Gn-; 1 0 -~ 0
—~@ng 0 1 -+ 0
R = Co
-a; 0 0 --- 1
-a; 0 0 --- 0

has all eigenvalues with negative real part.

Given any compact set S C R? x R™ x R™, there exist matrices
T and M, a number U® > 0 and a number R* > 0, such that,
if Unax = U® and R > R*, every trajectory of (4.57) with initial
condition in a compact set of the form. £3(0) x S converges to the
equtlibrium as t tends to oo.

Proof. Consider the (R-dependent) change of coordinates

with

x = D(R)(n — &)

D(R) = diag{R""",...,R,1},

and set, as before,

Ty = %, -’52=(€1), E=(0 I,) .

Fipally, define

v = v(z2,X) = Y(MEz; - MD"}(R)x) - MEz, .



4.5. Semiglobal robust regulation 107

Using these new coordinates, system (4.57) can be rewritten in
the form

X. = RI_{X + Gk(e)[KQZQ + Q(-Tl, EI2’ t, 0) + U(ZQ,X)]
zy = 2Z(0)z, +p(HEz),1,0)
9 = (A+ Bk(6)K2)zy + Bk(0)q(z,, Ez2,t,0) + Bk(6)v(za, Xx)
(4.58)
where

® NH 0
2=(5 7). B=(s)
Ko=(T M)
and F,G, H are as in (4.43). Set also £ = col(z,,z3) and
Qc={z: W(z) < o},

where W(z) is the function introduced in the proof of Proposition
4.6, namely

1
W (z) = max{Va(z2), @a(Vl(zl))} .
Let ¢ be such that
SCQ.

According to the value of ¢ thus determined choose, in view of Lemma
4.5, the matrix K> so as to render (4.51), in which we put b = a/4c/,
fulfilled for all z € Qz41. Then, choose Upax as the maximum value
of [MEz;| on the set Qz41. Thus, if £ € Qz41,

$(MEz;) = MEz,

and therefore,
v(z9,0) =0

for all £ € Q. Moreover, it is also easy to check that there ex-
ists a bounded positive nondecreasing continuous function vy(a) with
4(0) = 0, which is independent of R (if R > 1), such that

lv(z2, x)| < ¥(Ix]) (4.59)

for all (z,x) € S2z41 x K.
To prove the result, we begin by observing that the first equation
in (4.58) can be rewritten in the form

x = REx + G¢1(z,x,1,6) (4.60)
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where ¢ (z, x; t,0) satisfies

|¢1(zaXata0)| < ﬂ (461)

all (z,x) € Q41 X R*, for all ¢, for all 6 € © and all R > 1, where
£ > 0 is a fixed number.

As a consequence, it is possible to show that for any ¢; > 0 and
any ¢ there exists a number R* > 0 such that, if R > R*, for any
initial condition in £,(0) X S

z(t) € Qpyy for all t€[0,T] = |x(t1)| <e¢, for all tet,,T],

(4.62)
where T > t; is any number. To this end, let P be a positive definite
solution of PK + KTP = —I and observe that, if z(t) € Qs for
all ¢ in some interval 0,77, the function Q(x) = xT P satisfies (see
(4.60) and (4.61))

Q.
ax

IA

k
~Rix?+2IxTPIB < ~(R~ :l)lxl2 + up?

< —(R- %)sz(x) + 4B < —aQ(x) +

where k; > 0 and ks > 0 are numbers depending only on P, u is any
positive number, and

k1
a=(R-—)kg.
( #) 2
By standard comparison arguments, it is deduced that

_ 1—e%
X(t)? < ks [e™*x(0)* + ———pp?] ,

where k3 > 0 is a number depending only on P. Fix ¢ and choose
to satisfy 2k3puB? < €2, so that, ifa > 1,

()2 < kse=2t{x(0)]2 + ‘2_2 .

Fix_t1 > 0 and observe that

lim e |x(0)]* =0,
R—oo
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because |x(0)| = |D(R)(n(0) — £0(0))] is bounded by a polynomial of
order n — 1 in R. In particular, since £,(0) is fixed and n(0) ranges
over a compact set, there is R*, independent of n(0), such that
2
kae™ 1 |x(0)? < 5
for every R > R* and every 77(0) and the result (4.62) follows.
Now, consider the second and third equations of (4.58), namely

zy = Z(0)z; +p(HEz,1,0)
ty = (A+ Bk(6)K2)z: + Bk(8)gq(z1, Ez2,t,6) + Bk(8)v(z2, X),
(4.63)

which differ from the equations characterizing system (4.50) only by

the additional term Bk(6)v(z2,x) which affects the second one.
From the arguments previously used in the proof of Lemma 4.5

and from the estimate (4.59), we know that the functions V;(z,) and

Va(z2) satisfy

g%[Z(O)zl +P(HE.’I:2,t,9)] < ---o,(V1 ($1)) + (:'Vg(:z;2)

'aa% (A + Bk(6)K2)z; + Bk(8)g(z1, Ez2,1,0)] (4.64)
2

< al-Va(za) + g5aVa (@) + k(X))

for all (z,x) € Q41 X R?, for all ¢, for all § € © and all R > 1, where
k > 0 is some number depending only on Vo(z3). Thus, Vo(z2(t)) is
decreasing so long as

Valealt) > z5elVi(@(®) + Kyl

Recall also that the two inequalities (4.51) have enabled us to
show that, for all z(0) € S, the function W (z(t)) is decreasing along
the trajectories of (4.50). Similar arguments enable us now to show
that the trajectories of the “perturbed” system (4.63) converge to a
ball of arbitrarily small radius.

To this end, take any z € §. Let § > 0 be any (small) number,
satisfying § < }z(0)| and such that

B; = {z : |z| £ 6} C int(Qe41)
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1

Then, choose € so that

{(z1,22) : V1(z1) < 0_1(4C'k’7(;5)),V2($2) < 2ky(e)} C Bs

and consider the set
I'={z€Q1:|z| 26}

Clearly, z(0) is in the interior of I" and, if ¢; is sufficiently small,
so is also z(t) for all t € [0,t;]. Thus, |[x(t1)] < €. The previous
arguments prove that, for ¢ > t;, z(t) remains in the interior of
Qzy1- In fact, so long as z(t) € T, (4.62) implies x(t) < € and the
arguments already used in the proof of Proposition 4.6 show that
W (z(t)) is decreasing until z(t) enters the region

{(z1,22) : Vi(z1) < a7 (4c'kv(€)), Va(z2) < 2kv(€)} .

Thus z(t) cannot reach the boundary of Q. ;, because there W(z) >
W (z(0)). On the contrary, in finite time z(t) leaves I through the
boundary of Bj.

Having proven that, in finite time, both z(t) and x(t) enter a ball
of arbitrarily small radius centered at the equilibrium (z, &) = (0, 0),
the proof can be completed by showing that the latter is locally
asymptotically (actually, exponentially) stable. To this end, observe
that if, ]z| and |x| are sufficiently small (and R > 1),

IM(E$2 - D_I(R)X)l < Umax

and therefore
v(z2,x) = ~MD™H(R)x .

Thus, the problem is to establish local asymptotic stability of the
system

X RK + Gk(0)[K2z2 + q(21, Ez2,1,6) — MD™Y(R)x]
i = ¢o(z,t,60)-6(@)MD " (R)x.
(4.65)
Recall assumption A and observe that the estimate (4.46), since
a(r) and v(r) are continuously differentiable near r = 0 and Vi(z;)
-is a smooth function, implies that, for small |z|,

Iq(zla E$2a ta 0) |2 S d|$l2
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where d > 0 is a fixed number. Thus, arguments identical to those
used above show that for any x > 0 there is a R* such that, for all
R > R*, the quadratic form Q(x) satisfies an inequality of the form

T2 < aolxl? + plal (4.66)
where a¢ is a positive fixed number.
Assumption A implies that the equilibrium z; = 0 of system

T = Z(G):cl

is globally asymptotically stable, actually exponentially stable (be-
cause the system is linear). Thus, for each 6, there exists a matrix
5(6) > 0 such that the quadratic form V;(z1) = 21 S(6)z; satisfies
W )
Eaz(o)ﬂh = —|z1|® .
As a consequence, the derivative of Vi(z;) along the trajectories of
(4.65), for small |z|, satisfies
v
‘a_lxl < —ai|z1* + balzaf? (4.67)
z1
where a; and b; are positive fixed numbers.
Finally, arguments identical to those used in the proof of Lemma
4.5 show that the quadratic form V2(z2) there introduced satisfies,
for small |z|,

Vs |
o 02 S —aslaal® + bl + elxl?, (4.68)

where a9, by, ¢ are positive fixed numbers and b, can be rendered
arbitrarily small (by proper choice of K>).

From these properties, the required result follows from a repeated
application of the following “small-gain” argument, whose derivation
is straightforward and hence omitted. Suppose U;(2)) and Us(z;) are
positive definite quadratic forms satisfying

Ui (z1)
621

oU.
52(52)[2(21,22,1:) < —ag)ze)? + bolz1]? + Juf?,

fi(z1,22) £ —ailzf? + blz)?
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for small {2 ], {22, |u|, where a}, a3, by, b2, ¢ are positive fixed numbers.
Then, if
by by

. a1a2
there is @ > 0 such that the positive definite quadratic form

<1,

1
W(z,2) = ZUl(zl) + %U2(z1)

satisfies

oW oW fi(z1, 22) —alzi 12 — alzo? 2
(a_zl -672) (f?(zl’ZQau))s aIZII 0,22, +b,u'

for small |z;|, |22}, Ju|, where a and b are positive fixed numbers. «



Bibliographical Notes

The problem of output regulation for multivariable linear system has been
studied by many authors, among whom we mention, for instance, Smith and
Davison [44], Davison |7}, Francis and Wonham [16], Francis {14], Wonham
[50]. In particular, the work [14] of Francis has shown that the solvability
of a multivariable linear regulator problem corresponds to the solvability of
a system of two linear matrix equations and this is in turn equivalent, as
illustrated by Hautus in [17}, to a certain property of the transmission zeros
of a composite system which incorporates the plant and the exosystem. As
observed before, the regulator eguations (2.10) are the nonlinear counter-
part for the above-mentioned pair of linear equations found in the work of
Francis; likewise, conditions for the existence of solutions of the regulator
equations (2.10) discussed Chapter 3 are the nonlinear counterpart for the
properties of transmission zeros identified by Hautus. The work of Fran-
cis and Wonham [16] has shown that, in the case of error feedback, any
regulator which solves the problem in question incorporates a model of the
dynamical system generating the reference and/or the disturbance signals
which must be tracked and/or rejected. This property is commonly known
as the internal model principle.

More recently, some authors have considered the problem of output reg-
ulation also for nonlinear systems. The work of Hepburn and Wonham [19]
presents a rather complete extension of the notion of internal model and
its properties in the context of problems of output regulation for nonlin-
ear systems defined on differentiable manifolds. The work of Anantharam
and Desoer [1] investigates conditions for the existence of regulators for the
purpose of tracking constant reference signals. The work of Di Benedetto
[10] describes conditions for the existence of regulators in the case of one-
dimensional exosystem. The work of Huang and Rugh [27] presents a com-
plete extension of the conditions established by Francis to the case in which
the exosystem generates constant reference signals. The work of Isidori and
Byrnes {34) has shown how the results established by Francis can be ex-
tended to the general case of a nonlinear plant and a nonlinear exosystem
generating time-varying reference signals and/or disturbances, and how the
interpretation established by Hautus finds its natural nonlinear extension
in terms of the concept of zero dynamics. The approach of {34] to the
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problem of output regulation was further pursued by Huang and Rugh in
[28], [29]. In particular, the first paper improved the stabilization results
of [34] (by weakening the requirement of stability in the first approxima-
tion) and addressed the issue of finding a power series expansion of the
solution m(w) of the regulator equation (2.10). The second paper elabo-
rated on the property that if the solution in question is determined only
up to a certain degree of accuracy, then output regulation can be secured
up to a steady-state error of the same degree. An exhaustive presentation
of a number of issues related to polynomial approximation and/or power
series expansions for the determination of the solution of (2.10) can also be
found, together with several of important related results, in the paper [39]
by Krener. The concept of internal model and its role in the construction
of a controller solving the problem of output regulation was further refined
by Isidori in [30], where it is shown that the notion of internal model can
be best expressed in terms of the concept of immersion of a system into
another system, introduced earlier by Fliess in the context of problems of
system realization and system equivalence (see [12], [13]). Based on this
interpretation of the concept of internal model, [30] presented (for the first
time, to the best of our knowledge) a complete set of necessary and suf-
ficient conditions for the existence of a solution for the problem of local
output regulation for a nonlinear system.

The problem of output regulation for uncertain multivariable linear sys-
tems has been addressed and solved by Davison [7} and Francis [14]. In the
case of nonlinear systems the problem in question was originally addressed
in [16) and [20), where it was shown that, when the exogenous input is con-
stant (i.e. set point control under constant disturbances), the incorporation
of an internal model into the compensator (i.e. integral control) suffices
to guarantee output regulation in the presence of small parameter varia-
tions (i.e. a structurally stable design, in the terminology of [14], [20), is
achieved). However, Byrnes and Isidori {4] showed that, in the case of time-
varying inputs, a linear controller which is robust with respect to parameter
variations affecting the linear approximation may no longer be robust if the
parameter uncertainties affect some nonlinear term. _

A breakthrough in the direction of solving the problem of dealing with
parameter uncertainties in a problem of nonlinear regulation was the crucial
observation by Khalil [36] (see also [37]) that, in the presence of nonlineari-
ties with unknown parameters, the internal model must not only be able to
generate inputs corresponding to the trajectories of the exosystem, but also
a number of their “higher order” nonlinear “deformations”. For example,
in the case of a cubic nonlinearity with unknown coefficient and sinusoidal
reference output, the internal model must generate the sinusoid in question
and its third harmonic. This key idea was also independently elaborated

-by Huang and Lin, in [24], [25], [26] and by Delli Priscoli in [8}, [9]. In
particular Huang and Lin, appealing to concept of “regulation of order k”
(namely, regulation up to a steady-state error which is infinitesimal of order
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k with respect to the amplitude of the disturbance input) introduced earlier
in [29)], provided in [24] a methodology for the design of a controller which,
regardless of small parameter perturbations, achieves regulation of order k.
This methodology was proven in [25] to yield exact regulation, regardless of
small parameter variations, for some relevant classes of nonlinear systems
[25]. In fact, [25) shows that if the function ¢(w), which renders the reg-
ulator equations (2.10) satisfied for some 7(w), is a polynomial of (some)
degree k in w and the exosystem is a linear system then it is possible to
obtain structurally stable regulation by designing an internal model which
generates all the exogenous inputs as well all higher harmonics, up to order
k. Delli Priscoli, in [8] and [9), arrived at the (more general) conclusion that
structurally stable regulation is possible if the family of all functions of the
form u = c(w(t)), where w(t) is any exogenous input generated by the ex-
osystem, can be seen as a subset of the set of all possible solutions of a fixed
ordinary differential equation. This sufficient condition was later proven to
be also necessary in [30], where a complete set of necessary and sufficient
conditions for the existence of a solution for the problem of structurally
stable local output regulation for a nonlinear system was presented.

The problem of robust regulation, i.e. regulation in the presence of
parameter uncertainties ranging over pre-assigned compact sets, has been
studied by Khalil [37], by Byrnes, Delli Priscoli, Isidori and Kang (3], by
Mahmoud and Khalil [41], [42] and by Isidori [32] (see also [33]). Of these
papers, [3] considers the case of robust local output regulation, and presents
the method described here in section 5.2. The other papers consider the
problem of robust semiglobal regulation, i.e. the problem of designing of a
controller yielding asymptotic regulation for any initial condition over an
arbitrarily large (but fixed) compact set, robustly with respect to unknown
parameters also ranging over an arbitrarily large (but fixed) compact set.
In particular, paper [37] studies a class of system having relative degree
equal to the dimension of the state space (i.e. having a trivial zero dynam-
ics) and utilizes a technique developed earlier by Esfandjari and Khalil in
[11] to design an error-feedback controller in which the components of the
internal state are estimated by means of a “saturated” high-speed observer.
Paper [41] provides a set of sufficient conditions under which the approach
of [37] can be extended to the case of systems having a nontrivial zero dy-
namics. Finally, paper {32] provides an extension of the results of [37], [41]
and establishes a significant bridge between the results of these papers and
the general (but local) approach of [30]. In particular, paper [32] presents
the main semiglobal regulation result described here in section 4.5, whose
proof requires a blend of a number of most important robust stabilization
result recently presented in the literature. Once the existence of a globally
defined invariant manifold on which the error is zero has been established
(using techniques presented in [38]), the problem of robust regulation be-
comes similar to the problem of semiglobal stabilization via output feedback
addressed and solved by Teel and Praly in [48] and [49]). The stability proof
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described here, which follows a pattern similar to a proof presented in [37),
uses semiglobals robust stablilization methods of Krstic, Kanellakopoulos,
Kokotovic [40], the implications of the concept of input-to state stability
of Sontag [45), the idea of a saturated high-speed observer of Esfandjari
and Khalil [11] (already used earlier, to the same purpose, in [37]), and a
small-gain stability theorem of Hill and Moylan {22].
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